Math Problem Statement
1093–1152
1153–1212 1213–1272 1273–1332 1333–1392 1393–1452 Step 6 of 7 : Calculate the relative frequency of the sixth class. Determine your answer as a simplified fraction.
Solution
To calculate the relative frequency of the sixth class, follow these steps:
-
Determine the total number of classes: You've provided 7 classes.
-
Identify the sixth class: The sixth class is 1393–1452.
-
Calculate the total number of data points: To find the total number of data points, sum the frequencies of all classes. However, you haven’t provided the actual frequencies of each class, so I'll assume you have this information.
-
Determine the frequency of the sixth class: Let's denote this frequency as .
-
Calculate the relative frequency: This fraction should be simplified.
-
Simplify the fraction: Make sure the fraction is in its simplest form.
Since specific frequencies weren't provided, the exact relative frequency can't be calculated here. However, if you provide the frequencies, I can help you with the exact relative frequency calculation.
Would you like to provide those details, or do you need further clarification?
Follow-Up Questions:
- What are the frequencies of each class?
- Do you need help simplifying fractions?
- How do you calculate the total number of data points?
- What does a relative frequency tell you about the data?
- Are you familiar with other types of frequencies like cumulative frequency?
Tip:
Always ensure to simplify your fractions to their lowest terms to make your results more interpretable and comparable.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Statistics
Relative Frequency
Formulas
Relative Frequency = (Frequency of the class) / (Total number of data points)
Theorems
Relative Frequency Theorem
Suitable Grade Level
Grades 9-12