Math Problem Statement

For the given values of n and​ r, evaluate ​(a) StartFraction n exclamation mark Over left parenthesis n minus r right parenthesis exclamation mark EndFraction and ​(b) StartFraction n exclamation mark Over r exclamation mark left parenthesis n minus r right parenthesis exclamation mark EndFraction for nequals12 and requals5. Question content area bottom Part 1 ​(a) When nequals12 and requals5​, StartFraction n exclamation mark Over left parenthesis n minus r right parenthesis exclamation mark EndFraction equals    enter your response here. ​(Simplify your answer. Type an integer or a simplified​ fraction.)

Solution

To solve this, we need to evaluate the following two expressions:

  1. (a) n!(nr)!\frac{n!}{(n - r)!}

  2. (b) n!r!(nr)!\frac{n!}{r!(n - r)!}

where n=12n = 12 and r=5r = 5.


Part (a) n!(nr)!\frac{n!}{(n - r)!}

Given:

  • n=12n = 12
  • r=5r = 5
  1. First, calculate nrn - r: nr=125=7n - r = 12 - 5 = 7

  2. Substitute n=12n = 12 and nr=7n - r = 7 into the expression: n!(nr)!=12!7!\frac{n!}{(n - r)!} = \frac{12!}{7!}

  3. Expand 12!12! and 7!7!: 12!=12×11×10×9×8×7!12! = 12 \times 11 \times 10 \times 9 \times 8 \times 7!

  4. Cancel out 7!7! from the numerator and denominator: 12!7!=12×11×10×9×8\frac{12!}{7!} = 12 \times 11 \times 10 \times 9 \times 8

  5. Calculate this product: 12×11=13212 \times 11 = 132 132×10=1320132 \times 10 = 1320 1320×9=118801320 \times 9 = 11880 11880×8=9504011880 \times 8 = 95040

So, the answer for part (a) is: 12!7!=95040\frac{12!}{7!} = 95040


Part (b) n!r!(nr)!\frac{n!}{r!(n - r)!}

  1. Substitute n=12n = 12, r=5r = 5, and nr=7n - r = 7 into the expression: n!r!(nr)!=12!5!7!\frac{n!}{r!(n - r)!} = \frac{12!}{5! \cdot 7!}

  2. Using the values from Part (a), expand 12!12! and cancel out 7!7!: 12!5!7!=12×11×10×9×8×7!5!7!\frac{12!}{5! \cdot 7!} = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7!}{5! \cdot 7!}

  3. Cancel 7!7! from the numerator and denominator: =12×11×10×9×85!= \frac{12 \times 11 \times 10 \times 9 \times 8}{5!}

  4. Calculate 5!5!: 5!=5×4×3×2×1=1205! = 5 \times 4 \times 3 \times 2 \times 1 = 120

  5. Now we have: 12×11×10×9×8120\frac{12 \times 11 \times 10 \times 9 \times 8}{120}

  6. Using the product from Part (a), 12×11×10×9×8=9504012 \times 11 \times 10 \times 9 \times 8 = 95040: 95040120=792\frac{95040}{120} = 792

So, the answer for part (b) is: 12!5!7!=792\frac{12!}{5! \cdot 7!} = 792


Final Answers:

  • (a) 12!7!=95040\frac{12!}{7!} = 95040
  • (b) 12!5!7!=792\frac{12!}{5! \cdot 7!} = 792

Would you like further explanations or have any questions?


Related Questions:

  1. How does factorial growth affect combinations and permutations?
  2. How do combinations differ from permutations in calculation?
  3. What are the properties of factorials that simplify division?
  4. Can you derive the general formula for combinations from factorials?
  5. What is the importance of order in permutation problems?

Tip:

Remember, permutations consider order, while combinations do not. This difference is crucial in counting problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Factorials
Permutations
Combinations

Formulas

\(\frac{n!}{(n - r)!}\)
\(\frac{n!}{r!(n - r)!}\)

Theorems

Permutations formula
Combinations formula

Suitable Grade Level

Grades 9-12