Math Problem Statement
Every night, Doug drops any coins remaining in his pocket into a glass jar. Yesterday, Doug looked at how full the jar was and estimated he had $25. After he opened the jar and counted the coins, he found that the actual total was $30.60. What is the percent error for his estimate? If necessary, round your answer to the nearest tenth of a percent. %
Solution
The percent error is calculated using the formula:
Step 1: Identify the values
- Estimated Value = $25.00
- Actual Value = $30.60
Step 2: Substitute the values into the formula
Final Answer:
The percent error for Doug's estimate is approximately 18.4%.
Would you like to go over how to compute percent error in more detail or have other questions? Here are some related questions:
- How do you calculate the percent error if the actual value is smaller than the estimated value?
- What is the difference between absolute error and percent error?
- How do you calculate percent error when the values are in different units (like dollars and cents)?
- What impact does a higher or lower actual value have on the percent error?
- How can you reduce the percent error when making estimates in daily life?
Tip: Always ensure the "actual" value is known and accurate before calculating percent error, as it directly impacts the result.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Percent Error
Estimation
Absolute Error
Relative Error
Formulas
Percent Error = |(Estimated Value - Actual Value) / Actual Value| × 100
Theorems
-
Suitable Grade Level
Grades 6-8
Related Recommendation
Percent Error Calculation for Estimating the Number of Shells
Percent Error Calculation for Estimated vs Actual Profit
Percent Error Calculation for Greg's Estimate of Megan's Distance
Percent Error Problems: Money, Velocity, Time, and Batting Average
Calculate Percent Error in Estimation: Patrick's Time Estimate Problem