Math Problem Statement

Cho hàm chi phí của một xí nghiệp C = q^2 + 10q + 60 với q là sản lượng. Giá bán của sản phẩm là p = 250 - 0.5q. Tại mức sản lượng q = 50 thì lợi nhuận biên của xí nghiệp là?

Solution

The problem you've provided is about calculating the marginal profit of a firm based on the cost function and price function.

Given Information:

  • Cost function: C=q2+10q+60C = q^2 + 10q + 60 (where qq is the production quantity).
  • Price function: p=2500.5qp = 250 - 0.5q.

You are asked to find the marginal profit when q=50q = 50.

Steps to Solve:

  1. Revenue Function: The revenue RR is given by R=p×qR = p \times q. Since p=2500.5qp = 250 - 0.5q, the revenue function is: [ R(q) = (250 - 0.5q)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Cost Function
Revenue Function
Marginal Profit
Optimization

Formulas

C = q^2 + 10q + 60
p = 250 - 0.5q
Revenue R(q) = p * q
Profit = Revenue - Cost
Marginal Profit = d(Profit)/dq

Theorems

Marginal Analysis
Profit Maximization

Suitable Grade Level

Grades 10-12