Math Problem Statement

Complete the table to find the MAD of the data set. Data Value Absolute Deviation 126 138 276 178 236 90 MADequals . . . Question content area right Part 1 Write an equation for each absolute deviation.​ Then, find the MAD. Data Value Absolute Deviation 126 StartAbsoluteValue nothing minus 126 EndAbsoluteValue    equals    enter your response here 138 StartAbsoluteValue nothing minus 138 EndAbsoluteValue    equals    enter your response here 276 StartAbsoluteValue 276 minus nothing EndAbsoluteValue    equals    enter your response here 178 StartAbsoluteValue 178 minus nothing EndAbsoluteValue    equals    enter your response here 236 StartAbsoluteValue 236 minus nothing EndAbsoluteValue    equals    enter your response here 90 StartAbsoluteValue nothing minus 90 EndAbsoluteValue    equals    enter your response here MADequals    enter your response here

Solution

To compute the Mean Absolute Deviation (MAD), we proceed step by step:

  1. Step 1: Find the mean of the data set.
    The data set is: 126,138,276,178,236,90126, 138, 276, 178, 236, 90.
    The formula for the mean is:
    Mean=Sum of all valuesNumber of values\text{Mean} = \frac{\text{Sum of all values}}{\text{Number of values}}

    Mean=126+138+276+178+236+906=10446=174\text{Mean} = \frac{126 + 138 + 276 + 178 + 236 + 90}{6} = \frac{1044}{6} = 174

  2. Step 2: Calculate the absolute deviations for each data value.
    The formula for absolute deviation is:
    Absolute Deviation=Data ValueMean\text{Absolute Deviation} = \lvert \text{Data Value} - \text{Mean} \rvert

    Compute for each value:

    • For 126126:
      126174=48\lvert 126 - 174 \rvert = 48
    • For 138138:
      138174=36\lvert 138 - 174 \rvert = 36
    • For 276276:
      276174=102\lvert 276 - 174 \rvert = 102
    • For 178178:
      178174=4\lvert 178 - 174 \rvert = 4
    • For 236236:
      236174=62\lvert 236 - 174 \rvert = 62
    • For 9090:
      90174=84\lvert 90 - 174 \rvert = 84
  3. Step 3: Compute the MAD.
    The formula for MAD is:
    MAD=Sum of absolute deviationsNumber of values\text{MAD} = \frac{\text{Sum of absolute deviations}}{\text{Number of values}}

    Sum of absolute deviations:
    48+36+102+4+62+84=33648 + 36 + 102 + 4 + 62 + 84 = 336

    MAD:
    MAD=3366=56\text{MAD} = \frac{336}{6} = 56

Final Table:

Data ValueAbsolute Deviation
1264848
1383636
276102102
17844
2366262
908484

MAD = 56


Let me know if you'd like a deeper explanation!
Here are five follow-up questions for practice:

  1. What is the significance of the MAD in analyzing data?
  2. How does increasing or decreasing one value in the data set affect the MAD?
  3. Can you calculate the MAD for a new data set, 200,210,220,230,240200, 210, 220, 230, 240?
  4. What is the relationship between the MAD and variance?
  5. Why do we use absolute values instead of regular differences in MAD calculation?

Tip: The MAD is a great measure of variability, especially when dealing with data sets that may contain outliers!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Mean Absolute Deviation (MAD)
Data Analysis
Statistics

Formulas

Mean = (Sum of all values) / (Number of values)
Absolute Deviation = |Data Value - Mean|
MAD = (Sum of Absolute Deviations) / (Number of values)

Theorems

Mean Absolute Deviation
Calculation of Mean

Suitable Grade Level

Grades 6-8