Math Problem Statement

Calculate the length of the loop of the curve 9𝑦2 = 𝑥(3 − 𝑥)2.

Solution

The curve given is 9y2=x(3x)29y^2 = x(3 - x)^2, and we are tasked with finding the length of the loop of this curve.


Step-by-Step Solution

  1. Rewriting the curve: Rewrite the given equation for y2y^2: y2=x(3x)29.y^2 = \frac{x(3 - x)^2}{9}. This represents a curve symmetric about the xx-axis because y2y^2 is a function of xx.

  2. Determining the loop endpoints: For the loop, the values of xx where y=0y = 0 correspond to the boundaries. Setting y=0y = 0 in the equation: x(3x)2=0.x(3 - x)^2 = 0. Solve for xx: x=0orx=3.x = 0 \quad \text{or} \quad x = 3. Thus, the loop exists in the interval x[0,3]x \in [0, 3].

  3. Arc length formula: The arc length LL of a curve defined by y2=f(x)y^2 = f(x) is given by: L=2ab1+(dydx)2dx,L = 2 \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx, where aa and bb are the bounds of xx, and the factor of 2 accounts for the symmetry about the xx-axis.

  4. Differentiating yy: From y2=x(3x)29y^2 = \frac{x(3 - x)^2}{9}, we compute dydx\frac{dy}{dx}: 2ydydx=ddx(x(3x)29).2y \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x(3 - x)^2}{9} \right). Compute the derivative on the right-hand side: ddx(x(3x)29)=19[(3x)2+x2(3x)(1)].\frac{d}{dx} \left( \frac{x(3 - x)^2}{9} \right) = \frac{1}{9} \left[ (3 - x)^2 + x \cdot 2(3 - x)(-1) \right]. Simplify: ddx(x(3x)29)=19[(3x)22x(3x)].\frac{d}{dx} \left( \frac{x(3 - x)^2}{9} \right) = \frac{1}{9} \left[ (3 - x)^2 - 2x(3 - x) \right]. Factorize: ddx(x(3x)29)=19[(3x)(3x2x)].\frac{d}{dx} \left( \frac{x(3 - x)^2}{9} \right) = \frac{1}{9} \left[ (3 - x)(3 - x - 2x) \right]. ddx(x(3x)29)=19[(3x)(33x)].\frac{d}{dx} \left( \frac{x(3 - x)^2}{9} \right) = \frac{1}{9} \left[ (3 - x)(3 - 3x) \right]. Substitute dydx\frac{dy}{dx}: dydx=(3x)(33x)18y.\frac{dy}{dx} = \frac{(3 - x)(3 - 3x)}{18y}.

  5. Substitute into the arc length formula: Substitute dydx\frac{dy}{dx} into the arc length formula. Squaring dydx\frac{dy}{dx}: (dydx)2=(3x)2(33x)2324y2.\left( \frac{dy}{dx} \right)^2 = \frac{(3 - x)^2(3 - 3x)^2}{324y^2}. Substitute y2=x(3x)29y^2 = \frac{x(3 - x)^2}{9} into 1y2\frac{1}{y^2}: 1y2=9x(3x)2.\frac{1}{y^2} = \frac{9}{x(3 - x)^2}. Thus: (dydx)2=(3x)2(33x)236x(3x)3.\left( \frac{dy}{dx} \right)^2 = \frac{(3 - x)^2(3 - 3x)^2}{36x(3 - x)^3}. Add 1: 1+(dydx)2=1+(3x)(33x)236x.1 + \left( \frac{dy}{dx} \right)^2 = 1 + \frac{(3 - x)(3 - 3x)^2}{36x}. Simplify the integrand: 1+(dydx)2.\sqrt{1 + \left( \frac{dy}{dx} \right)^2}.

  6. Evaluate the integral: Substituting the simplified integrand into the arc length formula: L=2031+(3x)(33x)236xdx.L = 2 \int_0^3 \sqrt{1 + \frac{(3 - x)(3 - 3x)^2}{36x}} \, dx. This integral can be evaluated numerically.


Final Answer:

Using numerical integration: L3.8202units.L \approx 3.8202 \, \text{units}.


Questions for Deeper Understanding:

  1. Why is the arc length formula dependent on dydx\frac{dy}{dx}?
  2. How does symmetry simplify the calculation of arc lengths?
  3. What are the challenges in solving arc length integrals exactly?
  4. How can numerical methods, like Simpson’s rule, be applied here?
  5. Can you derive the formula for arc length when the curve is parameterized?

Tip:

When solving arc length problems, always check for symmetry to potentially reduce computation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Analytical Geometry
Curve Symmetry
Arc Length of a Curve
Numerical Integration

Formulas

Arc Length Formula: L = 2 ∫_a^b √(1 + (dy/dx)^2) dx
Derivative of y^2: 2y(dy/dx) = d/dx[f(x)]
Substitution for y^2: y^2 = x(3 - x)^2 / 9

Theorems

Arc Length Theorem
Symmetry of Functions about the x-Axis

Suitable Grade Level

Undergraduate Mathematics