Math Problem Statement
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limits
Trigonometric Functions
Taylor Series Expansion
Formulas
\(\lim_{x \to 0} \frac{\tan(x) + 2x}{\sin(x) + 2x}\)
\(\tan(x) \approx x + \frac{x^3}{3} + \mathcal{O}(x^5)\)
\(\sin(x) \approx x - \frac{x^3}{6} + \mathcal{O}(x^5)\)
Theorems
Taylor Series
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Limit Function Calculation Using Taylor Series: x - sin(2x) / 2x + tan(x)
Evaluate Limit Using Taylor Series: \( \lim_{{x \to 0}} \frac{x^3}{x - \tan(x)} \)
Solving the Limit of (tan 2x - 2x)/x^3 as x Approaches 0
Calculating the Limit: \( \lim_{{x \to 0}} \frac{\tan(x) - \sin(x)}{x^3} \) Using Taylor Series
Evaluate the Limit $$ \lim_{\overrightarrow{x}0}(\tan x - x)^{-1} $$ using Taylor Series Expansion