Math Problem Statement
Laske sen käyrän pituus, jonka parametrisointi on γ: [0,1] →R, γ(t)= (e^t cos t,e^t sin t,e^t). Kommentti: Jos laskee oikein, niin integraalista ei tule vaikea.
Solution
Tarkastellaan annettua parametrista käyrää , jossa .
Käyrän pituus lasketaan kaavalla:
Missä on käyrän johdannainen ja on sen pituus. Lasketaan siis ensin .
1. Derivointi
, joten derivointia tehdään komponenttikohtaisesti:
-
Ensimmäinen komponentti:
-
Toinen komponentti:
-
Kolmas komponentti:
Näin ollen:
2. Pituuden laskeminen
Seuraavaksi lasketaan :
Jatkamme laskemista:
Laajennetaan neliöt:
Koska , saamme:
Siis:
3. Integraali pituuden laskemiseksi
Käyrän pituus on siis:
Ratkaistaan tämä yksinkertainen integraali:
Vastaus
Käyrän pituus on siis:
Jos haluat tarkempia selityksiä tai lisäkysymyksiä, ole hyvä ja kerro!
Liittyvät kysymykset:
- Miten lasketaan käyrän pituus, kun parametrisointi on eri kuin tämä?
- Mikä on käyrän pituus kolmessa ulottuvuudessa, jos sen parametrisointi on esimerkiksi spiraali?
- Miten käyrän pituus muuttuu, jos parametrisointi sisältää trigonometristen funktioiden yhdistelmiä?
- Mikä on käyrän pituus, jos se on suora viiva?
- Miten määritellään käyrän pituus korkeammissa ulottuvuuksissa?
Vinkki
Käyrän pituuden laskemisessa on tärkeää muistaa, että komponenttien derivaatat lasketaan erikseen ja niiden neliöiden summa otetaan ennen integraalin laskemista.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Curve Length
Parametric Equations
Vector Derivatives
Formulas
Curve length formula: L = ∫_a^b ||γ'(t)|| dt
Derivative rules for parametric equations
Exponential and trigonometric function derivatives
Theorems
Fundamental Theorem of Calculus
Suitable Grade Level
University Level (Calculus Course)
Related Recommendation
Finding the Length of a Vector Curve: r(t) = sqrt(2) t i + e^t j + e^(-t) k
Find the Length of the Curve Defined by r(t) = ⟨t^2, t^3, t^4⟩ from t = 0 to t = 5
Arc Length of a Parametric Curve x = t^3 - 3t, y = 3t^2 from t = 0 to t = 1
Calculate the Length of Parametric Curve (x=e^-t*cos(t), y=e^-t*sin(t)) from -pi to 0
Arc Length of Parametric Curve x(t) = t^2 sin(t), y(t) = t^2 cos(t)