Math Problem Statement

Find the arc length of the curve defined parametrically by x(t) = t^2 sin(t) and y(t) = t^2 cos(t) over the interval 0 ≤ t ≤ 3. Enter the exact value without decimals.

Solution

To determine the arc length SS of the curve given by parametric equations x(t)x(t) and y(t)y(t) over the interval 0t30 \leq t \leq 3, we follow these steps:


1. Recall the Arc Length Formula for Parametric Curves

The arc length SS of a curve defined parametrically as x(t)x(t) and y(t)y(t) over atba \leq t \leq b is:

S=ab(dxdt)2+(dydt)2dtS = \int_a^b \sqrt{\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2} \, dt


2. Differentiate x(t)=t2sin(t)x(t) = t^2 \sin(t) and y(t)=t2cos(t)y(t) = t^2 \cos(t)

Using the product rule:

  1. For x(t)=t2sin(t)x(t) = t^2 \sin(t): dxdt=2tsin(t)+t2cos(t)\frac{dx}{dt} = 2t \sin(t) + t^2 \cos(t)

  2. For y(t)=t2cos(t)y(t) = t^2 \cos(t): dydt=2tcos(t)t2sin(t)\frac{dy}{dt} = 2t \cos(t) - t^2 \sin(t)


3. Square and Sum the Derivatives

Now, calculate (dxdt)2+(dydt)2\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2:

(dxdt)2=(2tsin(t)+t2cos(t))2\left( \frac{dx}{dt} \right)^2 = \left( 2t \sin(t) + t^2 \cos(t) \right)^2 (dydt)2=(2tcos(t)t2sin(t))2\left( \frac{dy}{dt} \right)^2 = \left( 2t \cos(t) - t^2 \sin(t) \right)^2

Adding these two terms simplifies significantly due to the trigonometric identity sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1. After simplification:

(dxdt)2+(dydt)2=4t2+t4\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 = 4t^2 + t^4


4. Integrate to Find SS

The arc length becomes:

S=034t2+t4dtS = \int_0^3 \sqrt{4t^2 + t^4} \, dt

Factor t2t^2 out of the square root:

S=03t2(4+t2)dt=03t4+t2dtS = \int_0^3 \sqrt{t^2 (4 + t^2)} \, dt = \int_0^3 t \sqrt{4 + t^2} \, dt


5. Solve the Integral

To solve t4+t2dt\int t \sqrt{4 + t^2} \, dt, use substitution:

Let u=4+t2u = 4 + t^2, so du=2tdtdu = 2t \, dt. Then:

tdt=12dut \, dt = \frac{1}{2} \, du

Substitute into the integral:

t4+t2dt=12udu\int t \sqrt{4 + t^2} \, dt = \frac{1}{2} \int \sqrt{u} \, du

The integral of u\sqrt{u} is:

udu=23u3/2\int \sqrt{u} \, du = \frac{2}{3} u^{3/2}

Thus:

t4+t2dt=1223u3/2=13u3/2\int t \sqrt{4 + t^2} \, dt = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} = \frac{1}{3} u^{3/2}

Substitute u=4+t2u = 4 + t^2 back:

t4+t2dt=13(4+t2)3/2\int t \sqrt{4 + t^2} \, dt = \frac{1}{3} (4 + t^2)^{3/2}


6. Evaluate the Definite Integral

Now evaluate from t=0t = 0 to t=3t = 3:

S=[13(4+t2)3/2]03S = \left[ \frac{1}{3} (4 + t^2)^{3/2} \right]_0^3

At t=3t = 3:

(4+32)=(4+9)=13,(4+9)3/2=133/2(4 + 3^2) = (4 + 9) = 13, \quad (4 + 9)^{3/2} = 13^{3/2}

At t=0t = 0:

(4+02)3/2=43/2=8(4 + 0^2)^{3/2} = 4^{3/2} = 8

Thus:

S=13[133/28]S = \frac{1}{3} \left[ 13^{3/2} - 8 \right]


Final Answer

The exact arc length is:

S=13(133/28)units.S = \frac{1}{3} \left( 13^{3/2} - 8 \right) \, \text{units.}

Let me know if you need any further clarification or detailed steps!


Related Questions

  1. What is the geometric interpretation of arc length in parametric equations?
  2. How does the arc length formula change for polar curves?
  3. What substitution techniques help solve integrals involving square roots?
  4. How do you derive sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1 in trigonometry?
  5. How is arc length calculated for surfaces of revolution?

Tip: To simplify square root integrals, always look for factoring or substitution methods first!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Arc Length of Parametric Equations
Differentiation
Integration
Substitution Method

Formulas

Arc Length Formula for Parametric Equations: S = ∫_a^b √((dx/dt)^2 + (dy/dt)^2) dt
Trigonometric Identity: sin^2(t) + cos^2(t) = 1
Substitution Method for Integration

Theorems

Trigonometric Pythagorean Identity

Suitable Grade Level

College Calculus / Advanced High School Calculus