Math Problem Statement

Calculate the coefficient of correlation for the provided data using Karl Pearson's formula.

Solution

Let's Solve the Problem Step-by-Step:


Part (i): Calculate the coefficient of correlation rr

Given Data:

  • n=10n = 10
  • ΣX=100\Sigma X = 100
  • ΣY=150\Sigma Y = 150
  • Σ(X10)2=180\Sigma (X - 10)^2 = 180
  • Σ(Y15)2=215\Sigma (Y - 15)^2 = 215
  • Σ(X10)(Y15)=60\Sigma (X - 10)(Y - 15) = 60

Formula for Karl Pearson’s Coefficient of Correlation:

r=Σ(XXˉ)(YYˉ)Σ(XXˉ)2Σ(YYˉ)2r = \frac{\Sigma (X - \bar{X})(Y - \bar{Y})}{\sqrt{\Sigma (X - \bar{X})^2 \cdot \Sigma (Y - \bar{Y})^2}}

Substitute Values:

  • Σ(XXˉ)(YYˉ)=60\Sigma (X - \bar{X})(Y - \bar{Y}) = 60
  • Σ(XXˉ)2=180\Sigma (X - \bar{X})^2 = 180
  • Σ(YYˉ)2=215\Sigma (Y - \bar{Y})^2 = 215

r=60180215r = \frac{60}{\sqrt{180 \cdot 215}}

Calculate:

  • 180215=38700=196.68\sqrt{180 \cdot 215} = \sqrt{38700} = 196.68
  • r=60196.68=0.305r = \frac{60}{196.68} = 0.305

Part (ii): Calculate Karl Pearson’s Coefficient of Correlation

Given Data:

  • n=12n = 12
  • ΣX=120\Sigma X = 120
  • ΣY=130\Sigma Y = 130
  • Σ(X8)2=150\Sigma (X - 8)^2 = 150
  • Σ(Y10)2=200\Sigma (Y - 10)^2 = 200
  • Σ(X8)(Y10)=50\Sigma (X - 8)(Y - 10) = 50

Formula for rr:

r=Σ(X8)(Y10)Σ(X8)2Σ(Y10)2r = \frac{\Sigma (X - 8)(Y - 10)}{\sqrt{\Sigma (X - 8)^2 \cdot \Sigma (Y - 10)^2}}

Substitute Values:

  • Σ(X8)(Y10)=50\Sigma (X - 8)(Y - 10) = 50
  • Σ(X8)2=150\Sigma (X - 8)^2 = 150
  • Σ(Y10)2=200\Sigma (Y - 10)^2 = 200

r=50150200r = \frac{50}{\sqrt{150 \cdot 200}}

Calculate:

  • 150200=30000=173.21\sqrt{150 \cdot 200} = \sqrt{30000} = 173.21
  • r=50173.21=0.289r = \frac{50}{173.21} = 0.289

Final Answers:

  1. Part (i): r=0.305r = 0.305
  2. Part (ii): r=0.289r = 0.289

Let me know if you'd like further clarifications or detailed steps for any part!


Questions to Expand Understanding:

  1. What is the significance of Karl Pearson’s coefficient of correlation in statistics?
  2. How does the sign of rr affect the interpretation of correlation between variables?
  3. What are the key assumptions for using the Pearson correlation coefficient?
  4. Can correlation imply causation? Why or why not?
  5. How would you compute rr if you were only given raw data instead of summaries?

Tip:

Always check for outliers in your data, as they can significantly influence the Pearson correlation coefficient and lead to misleading results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Correlation
Karl Pearson's Coefficient

Formulas

r = Σ(X - X̄)(Y - Ȳ) / √[Σ(X - X̄)² * Σ(Y - Ȳ)²]
r = Σ(X - a)(Y - b) / √[Σ(X - a)² * Σ(Y - b)²]

Theorems

Karl Pearson's Correlation Coefficient

Suitable Grade Level

Undergraduate Level (Statistics)