Math Problem Statement

Calculate Iz of the homogenous 3D object occupying the top half of the unit ball.

Solution

To calculate the moment of inertia IzI_z of the homogeneous 3D object occupying the top half of the unit ball about the z-axis, we follow these steps:

  1. Define the region: The top half of the unit ball is defined by: x2+y2+z21andz0x^2 + y^2 + z^2 \leq 1 \quad \text{and} \quad z \geq 0

  2. Moment of inertia definition: The moment of inertia IzI_z about the z-axis for a density ρ\rho is given by: Iz=Vρ(x2+y2)dVI_z = \iiint_V \rho (x^2 + y^2) \, dV For a homogeneous object with constant density, we can set ρ=1\rho = 1.

  3. Convert to spherical coordinates: To simplify the integral, we convert to spherical coordinates where: x=rsinθcosϕ,y=rsinθsinϕ,z=rcosθx = r \sin \theta \cos \phi, \quad y = r \sin \theta \sin \phi, \quad z = r \cos \theta The volume element in spherical coordinates is: dV=r2sinθdrdθdϕdV = r^2 \sin \theta \, dr \, d\theta \, d\phi

  4. Set the limits of integration: For the top half of the unit ball, the limits are: 0r1,0θπ2,0ϕ2π0 \leq r \leq 1, \quad 0 \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq \phi \leq 2\pi

  5. Express the integrand in spherical coordinates: Substituting xx and yy into the integrand x2+y2x^2 + y^2, we get: x2+y2=r2sin2θ(cos2ϕ+sin2ϕ)=r2sin2θx^2 + y^2 = r^2 \sin^2 \theta (\cos^2 \phi + \sin^2 \phi) = r^2 \sin^2 \theta

  6. Set up the integral: Iz=02π0π/201r2sin2θr2sinθdrdθdϕI_z = \int_0^{2\pi} \int_0^{\pi/2} \int_0^1 r^2 \sin^2 \theta \cdot r^2 \sin \theta \, dr \, d\theta \, d\phi

  7. Simplify the integrand: Iz=02π0π/201r4sin3θdrdθdϕI_z = \int_0^{2\pi} \int_0^{\pi/2} \int_0^1 r^4 \sin^3 \theta \, dr \, d\theta \, d\phi

  8. Evaluate the integral: Iz=02πdϕ0π/2sin3θdθ01r4drI_z = \int_0^{2\pi} d\phi \int_0^{\pi/2} \sin^3 \theta \, d\theta \int_0^1 r^4 \, dr First, compute the radial integral: 01r4dr=[r55]01=15\int_0^1 r^4 \, dr = \left[ \frac{r^5}{5} \right]_0^1 = \frac{1}{5} Next, compute the angular integrals: 02πdϕ=2π\int_0^{2\pi} d\phi = 2\pi 0π/2sin3θdθ\int_0^{\pi/2} \sin^3 \theta \, d\theta Use the substitution u=cosθu = \cos \theta, du=sinθdθdu = -\sin \theta \, d\theta: 0π/2sin3θdθ=10(1u2)(du)=01(1u2)du=[uu33]01=113=23\int_0^{\pi/2} \sin^3 \theta \, d\theta = \int_1^0 (1 - u^2) \, (-du) = \int_0^1 (1 - u^2) \, du = \left[ u - \frac{u^3}{3} \right]_0^1 = 1 - \frac{1}{3} = \frac{2}{3}

  9. Combine all results: Iz=2π2315=4π15I_z = 2\pi \cdot \frac{2}{3} \cdot \frac{1}{5} = \frac{4\pi}{15}

Thus, the moment of inertia IzI_z of the homogeneous 3D object occupying the top half of the unit ball about the z-axis is: Iz=4π15I_z = \frac{4\pi}{15}

Would you like details or have any questions?

Here are 5 questions you might ask next:

  1. How is the moment of inertia calculated for different shapes?
  2. Can you explain how to convert Cartesian coordinates to spherical coordinates?
  3. What are the applications of moment of inertia in physics?
  4. How does the density distribution affect the moment of inertia?
  5. Can you show an example of calculating the moment of inertia for another 3D object?

Tip: When dealing with integrals in spherical coordinates, always remember to include the Jacobian determinant (r2sinθr^2 \sin \theta) when changing variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Moment of Inertia
Integral Calculus
Spherical Coordinates

Formulas

Moment of Inertia for a 3D Object
Volume Element in Spherical Coordinates

Theorems

-

Suitable Grade Level

Advanced College