Math Problem Statement

intergral x^2e^-xdx

Solution

To find the integral x2exdx\int x^2 e^{-x} \, dx, we can use the method of integration by parts. Integration by parts is based on the formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

We need to choose uu and dvdv appropriately. Let's set:

u=x2anddv=exdxu = x^2 \quad \text{and} \quad dv = e^{-x} \, dx

Next, we need to find dudu and vv:

du=2xdxandv=exdx=exdu = 2x \, dx \quad \text{and} \quad v = \int e^{-x} \, dx = -e^{-x}

Now, apply the integration by parts formula:

x2exdx=uvvdu\int x^2 e^{-x} \, dx = uv - \int v \, du

Substitute uu, vv, dudu, and dvdv:

x2exdx=x2(ex)(ex)(2xdx)\int x^2 e^{-x} \, dx = x^2 (-e^{-x}) - \int (-e^{-x}) (2x \, dx) =x2ex+2xexdx= -x^2 e^{-x} + 2 \int x e^{-x} \, dx

Now we need to integrate xexdx\int x e^{-x} \, dx using integration by parts again. Set:

u=xanddv=exdxu = x \quad \text{and} \quad dv = e^{-x} \, dx

Then:

du=dxandv=exdu = dx \quad \text{and} \quad v = -e^{-x}

Apply the integration by parts formula again:

xexdx=uvvdu\int x e^{-x} \, dx = uv - \int v \, du

Substitute uu, vv, dudu, and dvdv:

xexdx=x(ex)(ex)dx\int x e^{-x} \, dx = x (-e^{-x}) - \int (-e^{-x}) \, dx =xex+exdx= -x e^{-x} + \int e^{-x} \, dx =xexex= -x e^{-x} - e^{-x} =ex(x+1)= -e^{-x} (x + 1)

Now substitute this result back into the original integral:

x2exdx=x2ex+2(ex(x+1))\int x^2 e^{-x} \, dx = -x^2 e^{-x} + 2 \left( -e^{-x} (x + 1) \right) =x2ex2ex(x+1)= -x^2 e^{-x} - 2 e^{-x} (x + 1) =x2ex2xex2ex= -x^2 e^{-x} - 2x e^{-x} - 2e^{-x} =ex(x2+2x+2)= -e^{-x} (x^2 + 2x + 2)

Therefore, the integral is:

x2exdx=ex(x2+2x+2)+C\int x^2 e^{-x} \, dx = -e^{-x} (x^2 + 2x + 2) + C

where CC is the constant of integration.

Do you want more details or have any questions?

Here are some related questions for further practice:

  1. Evaluate xexdx\int x e^{-x} \, dx.
  2. Evaluate x3exdx\int x^3 e^{-x} \, dx.
  3. Find x2exdx\int x^2 e^x \, dx using integration by parts.
  4. Evaluate x2cos(x)dx\int x^2 \cos(x) \, dx.
  5. Evaluate x2sin(x)dx\int x^2 \sin(x) \, dx.
  6. Find x2e2xdx\int x^2 e^{2x} \, dx.
  7. Evaluate x2ln(x)dx\int x^2 \ln(x) \, dx.
  8. Find x2e2xdx\int x^2 e^{-2x} \, dx.

Tip: When using integration by parts, choose uu and dvdv such that the resulting integral becomes simpler after applying the formula.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Exponential Functions

Formulas

Integration by Parts formula: \( \int u \, dv = uv - \int v \, du \)

Theorems

-

Suitable Grade Level

Advanced College Level