Math Problem Statement

Calcular el gradiente de f(2,-1,2) si f(X,y,z) = xyz - x^2-(x/y)+ 1.

Solution

Para calcular el gradiente de f(x,y,z)f(x, y, z) en el punto dado (2,1,2)(2, -1, 2), debemos seguir estos pasos:

Paso 1: Definimos el gradiente

El gradiente de una función f(x,y,z)f(x, y, z) está dado por: f(x,y,z)=(fx,fy,fz).\nabla f(x, y, z) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right).

Dado que f(x,y,z)=xyzx2xy+1f(x, y, z) = xyz - x^2 - \frac{x}{y} + 1, necesitamos calcular cada derivada parcial.


Paso 2: Derivadas parciales

  1. Parcial respecto a xx:
undefined

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Partial Derivatives
Gradients

Formulas

Gradient formula: ∇f(x, y, z) = (∂f/∂x, ∂f/∂y, ∂f/∂z)
Partial derivative rules for multivariable functions

Theorems

Properties of Gradients

Suitable Grade Level

Undergraduate (First-Year Calculus)