Math Problem Statement

Is given f(x)=x^3+2x-1 Find f(a+h)-f(a)

Solution

To find f(a+h)f(a)f(a+h) - f(a) for the function f(x)=x3+2x1f(x) = x^3 + 2x - 1, let's follow these steps:

  1. Substitute a+ha + h into the function f(x)f(x): f(a+h)=(a+h)3+2(a+h)1f(a+h) = (a+h)^3 + 2(a+h) - 1

  2. Expand (a+h)3(a+h)^3: (a+h)3=a3+3a2h+3ah2+h3(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3 So, f(a+h)=a3+3a2h+3ah2+h3+2a+2h1f(a+h) = a^3 + 3a^2h + 3ah^2 + h^3 + 2a + 2h - 1

  3. Calculate f(a)f(a): f(a)=a3+2a1f(a) = a^3 + 2a - 1

  4. Subtract f(a)f(a) from f(a+h)f(a+h): f(a+h)f(a)=(a3+3a2h+3ah2+h3+2a+2h1)(a3+2a1)f(a+h) - f(a) = \left( a^3 + 3a^2h + 3ah^2 + h^3 + 2a + 2h - 1 \right) - \left( a^3 + 2a - 1 \right)

  5. Simplify by canceling terms: f(a+h)f(a)=3a2h+3ah2+h3+2hf(a+h) - f(a) = 3a^2h + 3ah^2 + h^3 + 2h

Thus, the result is: [ f(a

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Functions
Function Evaluation

Formulas

f(a+h) - f(a)
(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3

Theorems

-

Suitable Grade Level

Grades 10-12