Math Problem Statement

Jawab​

Panjang garis persekutuan luar dua buah lingkaran adalah 24 cm. Jika panjang jari-jari kedua lingkaran adalah 14 cm dan 4 cm, jarak titik pusat kedua lingkaran tersebut adalah ... cm. Panjang jari-jari kedua lingkaran adalah 13 cm dan 7 cm, jarak titik pusat kedua lingkaran tersebut adalah 29 cm. Panjang garis persekutuan dalam dua buah lingkaran adalah ... cm.

Solution

To solve the problems:

Problem 1:

The formula to calculate the distance between the centers of two circles when the length of their external common tangent is known is:

d=L2+(r1+r2)2d = \sqrt{L^2 + (r_1 + r_2)^2}

Where:

  • L=24L = 24 cm (length of the external common tangent),
  • r1=14r_1 = 14 cm (radius of the first circle),
  • r2=4r_2 = 4 cm (radius of the second circle).

Substitute the values:

d=242+(14+4)2d = \sqrt{24^2 + (14 + 4)^2}

d=576+324d = \sqrt{576 + 324}

d=900=30cm.d = \sqrt{900} = 30 \, \text{cm}.

So the answer is not listed; double-check external tangent data.


Problem 2:

The formula for the internal common tangent is:

L=d2(r1r2)2L = \sqrt{d^2 - (r_1 - r_2)^2}

Where:

  • d=29d = 29 cm (distance between centers),
  • r1=13r_1 = 13 cm,
  • r2=7r_2 = 7 cm.

Substitute the values:

L=292(137)2L = \sqrt{29^2 - (13 - 7)^2}

L=84136L = \sqrt{841 - 36}

[ L = \sqrt{805} \approx 28,2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Circles
Distance between centers
Tangent lines

Formulas

External tangent length formula: d = √(L² + (r₁ + r₂)²)
Internal tangent length formula: L = √(d² - (r₁ - r₂)²)

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 10-12