Math Problem Statement

Question 10 (10.97 points) Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction:

P4(g) + 10 Cl2(g) → 4 PCl5(s) ΔH°rxn = ? Given: PCl5(s) → PCl3(g) + Cl2(g) ΔH°rxn = +157 kJ P4(g) + 6 Cl2(g) → 4 PCl3(g) ΔH°rxn = -1207 kJ Question 10 options:

-1786 kJ

-2100. kJ

-1835 kJ

-1364 kJ

-1050. kJ

Solution

To solve for the standard enthalpy of reaction, ΔHrxn\Delta H^\circ_{\text{rxn}}, for the reaction:

P4(g)+10Cl2(g)4PCl5(s)\text{P}_4(g) + 10 \, \text{Cl}_2(g) \rightarrow 4 \, \text{PCl}_5(s)

we can use the given reactions and manipulate them to match the target reaction. Here's the approach:

Step 1: Write the Given Reactions with Their Enthalpies

  1. Reaction 1:
    PCl5(s)PCl3(g)+Cl2(g)ΔHrxn=+157kJ\text{PCl}_5(s) \rightarrow \text{PCl}_3(g) + \text{Cl}_2(g) \quad \Delta H^\circ_{\text{rxn}} = +157 \, \text{kJ}

  2. Reaction 2:
    P4(g)+6Cl2(g)4PCl3(g)ΔHrxn=1207kJ\text{P}_4(g) + 6 \, \text{Cl}_2(g) \rightarrow 4 \, \text{PCl}_3(g) \quad \Delta H^\circ_{\text{rxn}} = -1207 \, \text{kJ}

Step 2: Manipulate the Reactions

We want to end up with P4(g)+10Cl2(g)4PCl5(s)\text{P}_4(g) + 10 \, \text{Cl}_2(g) \rightarrow 4 \, \text{PCl}_5(s).

To achieve this:

  1. Reverse Reaction 1 to produce 4PCl5(s)4 \, \text{PCl}_5(s) as a product. Reversing the reaction changes the sign of ΔHrxn\Delta H^\circ_{\text{rxn}}: 4PCl3(g)+4Cl2(g)4PCl5(s)ΔHrxn=4×157=628kJ4 \, \text{PCl}_3(g) + 4 \, \text{Cl}_2(g) \rightarrow 4 \, \text{PCl}_5(s) \quad \Delta H^\circ_{\text{rxn}} = -4 \times 157 = -628 \, \text{kJ}

  2. Use Reaction 2 as given: P4(g)+6Cl2(g)4PCl3(g)ΔHrxn=1207kJ\text{P}_4(g) + 6 \, \text{Cl}_2(g) \rightarrow 4 \, \text{PCl}_3(g) \quad \Delta H^\circ_{\text{rxn}} = -1207 \, \text{kJ}

Step 3: Add the Reactions

Now, add the manipulated reactions:

\text{P}_4(g) + 6 \, \text{Cl}_2(g) &\rightarrow 4 \, \text{PCl}_3(g) \quad (\Delta H^\circ = -1207 \, \text{kJ}) \\ 4 \, \text{PCl}_3(g) + 4 \, \text{Cl}_2(g) &\rightarrow 4 \, \text{PCl}_5(s) \quad (\Delta H^\circ = -628 \, \text{kJ}) \end{align*}$$ ### Step 4: Combine and Simplify Adding these reactions gives: $$\text{P}_4(g) + 10 \, \text{Cl}_2(g) \rightarrow 4 \, \text{PCl}_5(s)$$ And the enthalpy change for the overall reaction is: $$\Delta H^\circ_{\text{rxn}} = -1207 \, \text{kJ} + (-628 \, \text{kJ}) = -1835 \, \text{kJ}$$ ### Answer The enthalpy change $$\Delta H^\circ_{\text{rxn}}$$ for the reaction is: $$\boxed{-1835 \, \text{kJ}}$$ ### Correct Option: -1835 kJ --- Would you like a further breakdown of each manipulation step? Here are some related questions: 1. How do we determine whether to reverse a reaction when finding enthalpies? 2. What is the significance of a negative $$\Delta H^\circ_{\text{rxn}}$$? 3. Why does adding reactions' enthalpies work in this solution? 4. How does Hess's Law help in calculating reaction enthalpies? 5. What are common mistakes to avoid when combining enthalpies? **Tip:** Always check if reversing a reaction or multiplying it by a coefficient is necessary to match the desired final reaction.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Thermodynamics
Enthalpy of Reaction
Hess's Law

Formulas

ΔH°rxn = ΣΔH°products - ΣΔH°reactants

Theorems

Hess's Law

Suitable Grade Level

College Chemistry