Math Problem Statement

Tentukan nilai dy/dt dengan aturan rantai, nyatakan hasilnya dalam t.

Tentukan nilai dy/dt dengan aturan rantai, nyatakan hasilnya dalam t.

Solution

The given function is:

y=x2x2+1,x=3t+1y = \frac{x^2}{x^2 + 1}, \quad x = \sqrt{3t + 1}

We are tasked with finding dydt\frac{dy}{dt} using the chain rule.

Step-by-step process:

  1. Find dydx\frac{dy}{dx}: Differentiate y=x2x2+1y = \frac{x^2}{x^2 + 1} with respect to xx.

    Using the quotient rule:

    dydx=(x2+1)2xx22x(x2+1)2\frac{dy}{dx} = \frac{(x^2 + 1) \cdot 2x - x^2 \cdot 2x}{(x^2 + 1)^2} Simplify the numerator: dydx=2x(x2+1x2)(x2+1)2=2x(x2+1)2\frac{dy}{dx} = \frac{2x(x^2 + 1 - x^2)}{(x^2 + 1)^2} = \frac{2x}{(x^2 + 1)^2}

  2. Find dxdt\frac{dx}{dt}: Now, differentiate x=3t+1x = \sqrt{3t + 1} with respect to tt.

    dxdt=12(3t+1)123=323t+1\frac{dx}{dt} = \frac{1}{2} \cdot (3t + 1)^{-\frac{1}{2}} \cdot 3 = \frac{3}{2\sqrt{3t + 1}}

  3. Apply the chain rule: Now, use the chain rule to find dydt\frac{dy}{dt}:

    dydt=dydxdxdt\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} Substituting the expressions for dydx\frac{dy}{dx} and dxdt\frac{dx}{dt}:

    dydt=2x(x2+1)2323t+1\frac{dy}{dt} = \frac{2x}{(x^2 + 1)^2} \cdot \frac{3}{2\sqrt{3t + 1}} Simplify: dydt=3x(x2+1)23t+1\frac{dy}{dt} = \frac{3x}{(x^2 + 1)^2 \cdot \sqrt{3t + 1}}

  4. Substitute x=3t+1x = \sqrt{3t + 1} into the result:

    Since x=3t+1x = \sqrt{3t + 1}, substitute this into the expression:

    dydt=33t+1((3t+1)2+1)23t+1\frac{dy}{dt} = \frac{3\sqrt{3t + 1}}{((\sqrt{3t + 1})^2 + 1)^2 \cdot \sqrt{3t + 1}} Simplify further:

    dydt=3(3t+1+1)2=3(3t+2)2\frac{dy}{dt} = \frac{3}{(3t + 1 + 1)^2} = \frac{3}{(3t + 2)^2}

Thus, the value of dydt\frac{dy}{dt} is:

dydt=3(3t+2)2\frac{dy}{dt} = \frac{3}{(3t + 2)^2}

Let me know if you would like further clarification or a more detailed explanation.

Here are some related questions you might find helpful:

  1. How does the quotient rule work in differentiation?
  2. What is the chain rule, and when is it used?
  3. Can we find higher-order derivatives of the given function yy?
  4. How does implicit differentiation differ from the chain rule?
  5. Can we apply a different method, like substitution, to solve this?

Tip: When differentiating composite functions, always identify the outer and inner functions clearly to apply the chain rule correctly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Chain Rule
Quotient Rule

Formulas

y = (x^2) / (x^2 + 1)
x = √(3t + 1)
dy/dt = dy/dx * dx/dt

Theorems

Quotient Rule
Chain Rule

Suitable Grade Level

University level (Calculus)