Math Problem Statement

Berechnen Sie die Determinante der folgenden Matrix: A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & 1 \\ 1 & 4 & 0 & 2 \\ 2 & 0 & 0 & 4 \end{pmatrix}

Solution

To solve this problem, we need to calculate the determinants of the matrices provided in the image.

Matrix AA

A=(0001032114022004)A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & 1 \\ 1 & 4 & 0 & 2 \\ 2 & 0 & 0 & 4 \end{pmatrix}

The determinant of a 4×44 \times 4 matrix can be computed by expanding along a row or a column. Given the zeros in the first row, it’s advantageous to expand along that row.

Step-by-Step Solution

  1. Expand along the first row (using cofactor expansion): det(A)=0M110M12+0M13+1M14\det(A) = 0 \cdot M_{11} - 0 \cdot M_{12} + 0 \cdot M_{13} + 1 \cdot M_{14} where MijM_{ij} represents the minor of element aija_{ij}, which is the determinant of the 3×33 \times 3 matrix obtained by removing the ii-th row and jj-th column.

    Since only the term 1M141 \cdot M_{14} remains, we need only calculate the minor M14M_{14}.

  2. Calculate M14M_{14}: Removing the first row and fourth column, the 3×33 \times 3 submatrix is: (032140200)\begin{pmatrix} 0 & 3 & 2 \\ 1 & 4 & 0 \\ 2 & 0 & 0 \end{pmatrix}

  3. Find the determinant of this 3×33 \times 3 matrix: det(032140200)=0400031020+21420\det\begin{pmatrix} 0 & 3 & 2 \\ 1 & 4 & 0 \\ 2 & 0 & 0 \end{pmatrix} = 0 \cdot \begin{vmatrix} 4 & 0 \\ 0 & 0 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} + 2 \cdot \begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix}

  4. Calculate each minor:

    • For 04000=00 \cdot \begin{vmatrix} 4 & 0 \\ 0 & 0 \end{vmatrix} = 0
    • For 31020=3(1002)=0-3 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = -3 \cdot (1 \cdot 0 - 0 \cdot 2) = 0
    • For 21420=2(1042)=2(8)=162 \cdot \begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix} = 2 \cdot (1 \cdot 0 - 4 \cdot 2) = 2 \cdot (-8) = -16

    Therefore, det(032140200)=16\det\begin{pmatrix} 0 & 3 & 2 \\ 1 & 4 & 0 \\ 2 & 0 & 0 \end{pmatrix} = -16

  5. Complete the determinant calculation for AA: det(A)=1(16)=16\det(A) = 1 \cdot (-16) = -16

Conclusion

The determinant of matrix AA is det(A)=16\det(A) = -16.

Would you like to proceed with the determinant calculation for matrix BB as well?

Here are five related questions to deepen understanding:

  1. How does cofactor expansion work for determinants of larger matrices?
  2. What properties of determinants can simplify calculations?
  3. How does the presence of zero elements affect cofactor expansion?
  4. Can determinants be used to solve systems of linear equations?
  5. What does the determinant tell us about the invertibility of a matrix?

Tip: Expanding along rows or columns with the most zeros simplifies determinant calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants
Matrix Cofactor Expansion

Formulas

Determinant of a 4x4 matrix using cofactor expansion

Theorems

Cofactor expansion theorem

Suitable Grade Level

Undergraduate