Math Problem Statement

Quyidagi determinant qiymati nimaga teng?

Solution

Keltirilgan determinantning qiymatini topish uchun ushbu determinantni hisoblaymiz. Determinant quyidagicha ko'rinishda:

Δ=4312560210\Delta = \begin{vmatrix} -4 & 3 & 12 \\ -5 & 6 & 0 \\ 2 & -1 & 0 \end{vmatrix}

Bu determinantni hisoblash uchun, birinchi qatordan foydalanib, kichik determinantlar yordamida ochamiz:

Δ=4601035020+125621\Delta = -4 \cdot \begin{vmatrix} 6 & 0 \\ -1 & 0 \end{vmatrix} - 3 \cdot \begin{vmatrix} -5 & 0 \\ 2 & 0 \end{vmatrix} + 12 \cdot \begin{vmatrix} -5 & 6 \\ 2 & -1 \end{vmatrix}

Endi har bir 2x2 kichik determinantni hisoblaymiz:

  1. 6010=(60)(01)=0\begin{vmatrix} 6 & 0 \\ -1 & 0 \end{vmatrix} = (6 \cdot 0) - (0 \cdot -1) = 0
  2. 5020=(50)(02)=0\begin{vmatrix} -5 & 0 \\ 2 & 0 \end{vmatrix} = (-5 \cdot 0) - (0 \cdot 2) = 0
  3. 5621=(51)(62)=512=7\begin{vmatrix} -5 & 6 \\ 2 & -1 \end{vmatrix} = (-5 \cdot -1) - (6 \cdot 2) = 5 - 12 = -7

Endi bu qiymatlarni asosiy formulaga qo'yamiz:

Δ=4030+12(7)=0+084=84\Delta = -4 \cdot 0 - 3 \cdot 0 + 12 \cdot (-7) = 0 + 0 - 84 = -84

Shunday qilib, determinantning qiymati Δ=84\Delta = -84 ga teng.

Sizga qo'shimcha ma'lumot kerakmi yoki boshqa savollaringiz bormi?

Mana, mavzuga oid beshta savol:

  1. 2x2 determinantni qanday hisoblash mumkin?
  2. Determinantning geometrik ma'nosi nima?
  3. Uchburchak shaklidagi determinantning qiymati qanday hisoblanadi?
  4. Determinantning qanday asosiy xususiyatlari mavjud?
  5. Nima uchun determinant qiymati noldan farqli bo'lsa, matritsa o'ziga xos bo'ladi?

Maslahat: Matritsa determinantini hisoblashda biror bir qator yoki ustundagi eng ko'p nollarni o'z ichiga olgan satr yoki ustunni tanlash, hisob-kitoblarni soddalashtiradi.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Determinants
Matrix Algebra

Formulas

3x3 Determinant Formula

Theorems

Properties of Determinants

Suitable Grade Level

Advanced High School