Math Problem Statement

در مدار مقابل R=۵۰ اهم و مقاومت ولت سنج ۵۰MG است جریان عبوری از منبع آرمانی در عدم اتصال ولت سنج وبا اتصال ولت سنج را به دست آورید

در مدار مقابل R=۵۰ اهم و مقاومت ولت سنج ۵۰MG است جریان عبوری از منبع آرمانی در عدم اتصال ولت سنج وبا اتصال ولت سنج را به دست آورید

Solution

The question involves analyzing the given circuit to find the current flowing through the ideal voltage source when:

  1. The voltmeter is disconnected.
  2. The voltmeter is connected.

Extracted Information:

  1. The resistor R=50ΩR = 50 \, \Omega.
  2. The voltmeter's internal resistance Rv=50MΩR_v = 50 \, \text{M}\Omega (50 Megaohms).
  3. The voltage of the source is not explicitly mentioned, so we'll use EE to denote it.

Case 1: Voltmeter disconnected

When the voltmeter is disconnected, the current is determined by the source voltage EE and the resistance RR: Ino voltmeter=ER.I_{\text{no voltmeter}} = \frac{E}{R}.

Case 2: Voltmeter connected

When the voltmeter is connected, the voltmeter and RR form a parallel combination. The equivalent resistance of the circuit is: Req=11R+1Rv=RRvR+Rv.R_{\text{eq}} = \frac{1}{\frac{1}{R} + \frac{1}{R_v}} = \frac{R \cdot R_v}{R + R_v}. Substituting the values R=50ΩR = 50 \, \Omega and Rv=50MΩR_v = 50 \, \text{M}\Omega: Req50Ω,R_{\text{eq}} \approx 50 \, \Omega, since RvRR_v \gg R, the resistance of the voltmeter hardly affects the equivalent resistance.

Thus, the current is approximately the same as in Case 1: Iwith voltmeterER.I_{\text{with voltmeter}} \approx \frac{E}{R}.

Final Answer:

  1. Current with the voltmeter disconnected: I=E50I = \frac{E}{50}.
  2. Current with the voltmeter connected: IE50I \approx \frac{E}{50}.

If more details or exact numerical values for EE are available, I can calculate specific results. Let me know!


Would you like additional clarifications?
Here are 5 related questions for deeper understanding:

  1. What happens if the voltmeter resistance is comparable to RR?
  2. How would this change if RR were in series with another resistor?
  3. Can you derive the percentage error introduced by the voltmeter?
  4. How would the result change with a finite internal resistance in the voltage source?
  5. What are the practical implications of such high-resistance voltmeters?

Tip: Always compare the voltmeter resistance with the circuit resistance to estimate its effect on the measurements!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Electric Circuits
Resistance
Parallel and Series Circuits
Ohm's Law

Formulas

Ohm's Law: I = E / R
Parallel Resistance Formula: 1 / Req = 1 / R1 + 1 / R2

Theorems

Ohm's Law
Parallel Resistance Theorem

Suitable Grade Level

Grades 10-12 (High School Physics)