Math Problem Statement

without using tables or a calculator find the value of cos(120+45) leave your answer in surd form

Solution

To solve cos(120+45)\cos(120^\circ + 45^\circ) without using a calculator or tables, we can use the angle addition formula for cosine:

cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B

Here, A=120A = 120^\circ and B=45B = 45^\circ. Substituting these values into the formula:

cos(120+45)=cos120cos45sin120sin45\cos(120^\circ + 45^\circ) = \cos 120^\circ \cos 45^\circ - \sin 120^\circ \sin 45^\circ

Step 1: Calculate cos120\cos 120^\circ and sin120\sin 120^\circ

  • cos120=12\cos 120^\circ = -\frac{1}{2} (since 120120^\circ is in the second quadrant, where cosine is negative)
  • sin120=32\sin 120^\circ = \frac{\sqrt{3}}{2} (since 120=18060120^\circ = 180^\circ - 60^\circ)

Step 2: Calculate cos45\cos 45^\circ and sin45\sin 45^\circ

  • cos45=12=22\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}
  • sin45=12=22\sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}

Step 3: Substitute into the formula

Now substitute the values into the angle addition formula:

cos(120+45)=(12)(22)(32)(22)\cos(120^\circ + 45^\circ) = \left(-\frac{1}{2}\right) \left(\frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right)

Step 4: Simplify

cos(165)=12223222\cos(165^\circ) = -\frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} =2464= -\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}

Step 5: Combine terms

cos(165)=2+64\cos(165^\circ) = -\frac{\sqrt{2} + \sqrt{6}}{4}

Thus, the value of cos(120+45)\cos(120^\circ + 45^\circ) in surd form is:

2+64\boxed{-\frac{\sqrt{2} + \sqrt{6}}{4}}

Would you like further details or have any questions?


Here are 5 related questions:

  1. How would you apply the sine addition formula to solve sin(120+45)\sin(120^\circ + 45^\circ)?
  2. What are the exact values of trigonometric functions for angles in other quadrants?
  3. Can you simplify cos(120+θ)\cos(120^\circ + \theta) for any angle θ\theta?
  4. How do trigonometric values change as angles move through different quadrants?
  5. What is the geometric interpretation of cosine for angles greater than 9090^\circ?

Tip: For non-standard angles, always break them into familiar angles using addition or subtraction and apply known formulas.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Addition Formula
Surd Form

Formulas

cos(A + B) = cos(A)cos(B) - sin(A)sin(B)

Theorems

Trigonometric Values for Standard Angles
Cosine Function Properties in Different Quadrants

Suitable Grade Level

Grades 10-12