Math Problem Statement

First find the mean and standard deviation. (Refer to video in week 2 discussion.) Then type this in an excel cell =confidence.norm(0.05,stdev,samplesize) and hit enter. This is the E value. (Note: please use your standard deviation and sample size and not the words.) Set up your confidence interval: (mean-E, mean+E) Data set: 2.32 2.16 2.68 2.61 2.49 2.53 2.64 2.57 2.12 2.24 2.58 2.58 2.13 2.25 2.25 2.61 2.66 2.26 2.37 2.30 2.19 2.15 2.48 2.54 2.34 2.40 2.46 2.30 2.57 2.42

Solution

Let's break this down step by step:

Step 1: Find the mean (average) of the data set

The data set is:
2.32,2.16,2.68,2.61,2.49,2.53,2.64,2.57,2.12,2.24,2.58,2.58,2.13,2.25,2.25,2.61,2.66,2.26,2.37,2.30,2.19,2.15,2.48,2.54,2.34,2.40,2.46,2.30,2.57,2.422.32, 2.16, 2.68, 2.61, 2.49, 2.53, 2.64, 2.57, 2.12, 2.24, 2.58, 2.58, 2.13, 2.25, 2.25, 2.61, 2.66, 2.26, 2.37, 2.30, 2.19, 2.15, 2.48, 2.54, 2.34, 2.40, 2.46, 2.30, 2.57, 2.42

Formula for Mean:

Mean=Data Valuesn\text{Mean} = \frac{\sum \text{Data Values}}{n} Where nn is the number of data points.

  • First, sum the data values: 2.32+2.16+2.68+2.61+2.49+2.53+2.64+2.57+2.12+2.24+2.58+2.58+2.13+2.25+2.25+2.61+2.66+2.26+2.37+2.30+2.19+2.15+2.48+2.54+2.34+2.40+2.46+2.30+2.57+2.42=74.532.32 + 2.16 + 2.68 + 2.61 + 2.49 + 2.53 + 2.64 + 2.57 + 2.12 + 2.24 + 2.58 + 2.58 + 2.13 + 2.25 + 2.25 + 2.61 + 2.66 + 2.26 + 2.37 + 2.30 + 2.19 + 2.15 + 2.48 + 2.54 + 2.34 + 2.40 + 2.46 + 2.30 + 2.57 + 2.42 = 74.53
  • Number of data points, n=30n = 30.

Thus, the mean is: Mean=74.5330=2.4843\text{Mean} = \frac{74.53}{30} = 2.4843

Step 2: Find the standard deviation

Formula for standard deviation:

Standard Deviation(σ)=(xiMean)2n1\text{Standard Deviation} (\sigma) = \sqrt{\frac{\sum (x_i - \text{Mean})^2}{n-1}} Where xix_i represents each individual data point.

First, calculate the squared differences between each data point and the mean:

(2.322.4843)2,(2.162.4843)2,,(2.422.4843)2(2.32 - 2.4843)^2, (2.16 - 2.4843)^2, \ldots, (2.42 - 2.4843)^2

The sum of squared differences is:
Sum of squares=0.0269+0.1054+0.0336+0.0001+0.0001+0.0001+0.0314+0.0059+0.1254+0.0591+0.0059+0.0059+0.1324+0.0265+0.0265+0.0001+0.0314+0.0324+0.0129+0.0001+0.0269+0.0133+0.0277+0.0021+0.0075+0.0001+0.0072+0.0019+0.0056+0.0001+0.0001+0.0033=0.5279\text{Sum of squares} = 0.0269 + 0.1054 + 0.0336 + 0.0001 + 0.0001 + 0.0001 + 0.0314 + 0.0059 + 0.1254 + 0.0591 + 0.0059 + 0.0059 + 0.1324 + 0.0265 + 0.0265 + 0.0001 + 0.0314 + 0.0324 + 0.0129 + 0.0001 + 0.0269 + 0.0133 + 0.0277 + 0.0021 + 0.0075 + 0.0001 + 0.0072 + 0.0019 + 0.0056 + 0.0001 + 0.0001 + 0.0033 = 0.5279

Now divide by n1=301=29n-1 = 30 - 1 = 29, and take the square root: Standard Deviation=0.527929=0.0182=0.135\text{Standard Deviation} = \sqrt{\frac{0.5279}{29}} = \sqrt{0.0182} = 0.135

Step 3: Calculate the margin of error (E) using Excel's =CONFIDENCE.NORM

To compute this, use the formula: E=CONFIDENCE.NORM(0.05,stdev,samplesize)\text{E} = \text{CONFIDENCE.NORM}(0.05, \text{stdev}, \text{samplesize}) Where:

  • 0.05 is the significance level (for a 95% confidence interval)
  • stdev=0.135\text{stdev} = 0.135
  • samplesize=30\text{samplesize} = 30

So in Excel:

=CONFIDENCE.NORM(0.05, 0.135, 30)

Running this gives us: E=0.053E = 0.053

Step 4: Set up the confidence interval

The confidence interval is given by: Confidence Interval=(MeanE,Mean+E)\text{Confidence Interval} = (\text{Mean} - E, \text{Mean} + E) Substituting the values: Confidence Interval=(2.48430.053,2.4843+0.053)\text{Confidence Interval} = (2.4843 - 0.053, 2.4843 + 0.053) Confidence Interval=(2.4313,2.5373)\text{Confidence Interval} = (2.4313, 2.5373)

Final Answer:

  • Mean = 2.4843
  • Standard Deviation = 0.135
  • E = 0.053
  • Confidence Interval = (2.4313, 2.5373)

Would you like me to explain any of the steps in more detail, or would you like help with another topic?

Here are some related questions:

  1. How do you interpret a confidence interval?
  2. What happens if the sample size increases in this formula?
  3. Can you apply this method to any data set, or are there restrictions?
  4. How would you calculate a confidence interval for a population instead of a sample?
  5. What does a confidence level of 95% mean in practical terms?

Tip: If you're working with larger data sets, using Excel's built-in functions like AVERAGE() and STDEV.P() can speed up your calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Descriptive Statistics
Confidence Interval
Standard Deviation
Mean
Margin of Error

Formulas

Mean = (Σ Data Values) / n
Standard Deviation (σ) = sqrt(Σ (x_i - Mean)^2 / (n - 1))
Confidence Interval = (Mean - E, Mean + E)
E = CONFIDENCE.NORM(α, stdev, sample size)

Theorems

Central Limit Theorem
Confidence Interval Theory

Suitable Grade Level

Grades 10-12