Math Problem Statement

To find the area enclosed by the curves defined by the parametric equations:

( π‘₯ 1 , 𝑦 1 , 𝑧 1 )

( π‘Ž cos ⁑ ( 𝑑 ) , π‘Ž sin ⁑ ( 𝑑 ) , 𝑐 𝑑 ) (x 1 ​ ,y 1 ​ ,z 1 ​ )=(acos(t),asin(t),ct) for 𝑑 t from 0 0 to 10 πœ‹ 10Ο€ ( π‘₯ 2 , 𝑦 2 , 𝑧 2 )

( π‘Ž cos ⁑ ( 𝑑 + 𝑔 πœ‹ ) , π‘Ž sin ⁑ ( 𝑑 + 𝑔 πœ‹ ) , 𝑐 𝑑 ) (x 2 ​ ,y 2 ​ ,z 2 ​ )=(acos(t+gΟ€),asin(t+gΟ€),ct) for 𝑑 t from 0 0 to 10 πœ‹ 10Ο€, where 𝑔

4 10 g= 10 4 ​ and π‘Ž

1 a=1, you can follow these steps

Solution

To find the area enclosed by the curves defined by the parametric equations given, we need to consider the geometry and algebra involved in the problem.

Step 1: Understand the Parametric Equations

The two sets of parametric equations are:

  1. (x1,y1,z1)=(acos⁑(t),asin⁑(t),ct)(x_1, y_1, z_1) = (a \cos(t), a \sin(t), ct) for tt from 00 to 10Ο€10\pi
  2. (x2,y2,z2)=(acos⁑(t+gΟ€),asin⁑(t+gΟ€),ct)(x_2, y_2, z_2) = (a \cos(t + g\pi), a \sin(t + g\pi), ct) for tt from 00 to 10Ο€10\pi

where a=1a = 1, g=410g = \frac{4}{10}, and cc is some constant.

Step 2: Projection onto the XY-plane

Since the area is typically enclosed in a plane, we can project the curves onto the xyxy-plane by ignoring the zz-coordinate. The projected equations are:

  1. (x1,y1)=(cos⁑(t),sin⁑(t))(x_1, y_1) = (\cos(t), \sin(t))
  2. (x2,y2)=(cos⁑(t+4Ο€10),sin⁑(t+4Ο€10))(x_2, y_2) = (\cos(t + \frac{4\pi}{10}), \sin(t + \frac{4\pi}{10}))

Step 3: Determine the Enclosed Area

To find the area between these curves in the xyxy-plane over the interval tt from 00 to 10Ο€10\pi, we can compute the area between two curves.

Step 4: Use the Parametric Area Formula

The area AA between two parametric curves C1:(x1(t),y1(t))C_1: (x_1(t), y_1(t)) and C2:(x2(t),y2(t))C_2: (x_2(t), y_2(t)) from t=t1t = t_1 to t=t2t = t_2 is given by:

A=12∫t1t2[x1(t)y2β€²(t)βˆ’y1(t)x2β€²(t)+x2(t)y1β€²(t)βˆ’y2(t)x1β€²(t)] dtA = \frac{1}{2} \int_{t_1}^{t_2} \left[ x_1(t) y_2'(t) - y_1(t) x_2'(t) + x_2(t) y_1'(t) - y_2(t) x_1'(t) \right] \, dt

Step 5: Calculate the Derivatives

  1. For C1:(x1(t),y1(t))=(cos⁑(t),sin⁑(t))C_1: (x_1(t), y_1(t)) = (\cos(t), \sin(t)):

    • x1β€²(t)=βˆ’sin⁑(t)x_1'(t) = -\sin(t)
    • y1β€²(t)=cos⁑(t)y_1'(t) = \cos(t)
  2. For C2:(x2(t),y2(t))=(cos⁑(t+4Ο€10),sin⁑(t+4Ο€10))C_2: (x_2(t), y_2(t)) = (\cos(t + \frac{4\pi}{10}), \sin(t + \frac{4\pi}{10})):

    • x2β€²(t)=βˆ’sin⁑(t+4Ο€10)x_2'(t) = -\sin(t + \frac{4\pi}{10})
    • y2β€²(t)=cos⁑(t+4Ο€10)y_2'(t) = \cos(t + \frac{4\pi}{10})

Step 6: Substitute into the Formula

Substituting these derivatives into the parametric area formula:

A=12∫010Ο€[cos⁑(t)cos⁑(t+4Ο€10)+sin⁑(t)sin⁑(t+4Ο€10)βˆ’cos⁑(t+4Ο€10)cos⁑(t)βˆ’sin⁑(t+4Ο€10)sin⁑(t)] dtA = \frac{1}{2} \int_{0}^{10\pi} \left[ \cos(t) \cos(t + \frac{4\pi}{10}) + \sin(t) \sin(t + \frac{4\pi}{10}) - \cos(t + \frac{4\pi}{10}) \cos(t) - \sin(t + \frac{4\pi}{10}) \sin(t) \right] \, dt

Step 7: Simplify the Integrand

Notice that the terms in the integrand simplify using trigonometric identities, specifically the angle sum identity:

cos⁑(t)cos⁑(t+4Ο€10)+sin⁑(t)sin⁑(t+4Ο€10)=cos⁑(tβˆ’(t+4Ο€10))=cos⁑(βˆ’4Ο€10)\cos(t) \cos(t + \frac{4\pi}{10}) + \sin(t) \sin(t + \frac{4\pi}{10}) = \cos\left(t - (t + \frac{4\pi}{10})\right) = \cos\left(-\frac{4\pi}{10}\right)

cos⁑(t+4Ο€10)cos⁑(t)+sin⁑(t+4Ο€10)sin⁑(t)=cos⁑(t+4Ο€10βˆ’t)=cos⁑(4Ο€10)\cos(t + \frac{4\pi}{10}) \cos(t) + \sin(t + \frac{4\pi}{10}) \sin(t) = \cos\left(t + \frac{4\pi}{10} - t\right) = \cos\left(\frac{4\pi}{10}\right)

The integrand becomes:

A=12∫010Ο€[2cos⁑(4Ο€10)βˆ’2cos⁑(4Ο€10)] dt=0A = \frac{1}{2} \int_{0}^{10\pi} \left[ 2 \cos\left(\frac{4\pi}{10}\right) - 2 \cos\left(\frac{4\pi}{10}\right) \right] \, dt = 0

Step 8: Interpret the Result

The integral evaluates to zero, indicating that the area enclosed by these curves over the given interval tt is zero. This suggests that the curves are symmetric or coincide in such a way that no enclosed area is formed.

Would you like any further details or explanations?

Follow-up Questions:

  1. How would the result change if the parameter gg were different?
  2. Can we consider a different method to find the enclosed area in 3D space?
  3. What happens if the curves do not overlap exactly, leading to a non-zero area?
  4. Could you analyze the geometric meaning of the parameter gg in this context?
  5. How does the constant cc in the zz-coordinate affect the problem?

Tip:

Always check for symmetry in parametric curves, as it can often simplify the problem significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Vector Geometry
Integral Calculus

Formulas

Parametric Area Formula

Theorems

-

Suitable Grade Level

Advanced Undergraduate