Math Problem Statement

Tentukanlah sudut diantara vector-vektor berikut, jika berlaku hasil kali titik. selesaikan menggunakan cara ruang hasil kali dalam

Tentukanlah sudut diantara vector-vektor berikut, jika berlaku hasil kali titik. selesaikan menggunakan cara ruang hasil kali dalam

Solution

To solve the problem of finding the angle between the vectors using the dot product (inner product in Euclidean space), we use the following formula:

cosθ=PQPQ\cos \theta = \frac{\vec{P} \cdot \vec{Q}}{\|\vec{P}\| \|\vec{Q}\|}

Where:

  • PQ\vec{P} \cdot \vec{Q} is the dot product of vectors PP and QQ.
  • P\|\vec{P}\| and Q\|\vec{Q}\| are the magnitudes of PP and QQ.
  • θ\theta is the angle between the vectors.

Let's solve for both cases.

Case (a): P=(1,5,2)P = (-1, 5, 2) and Q=(2,4,9)Q = (2, 4, -9)

  1. Dot Product: PQ=(1)(2)+(5)(4)+(2)(9)\vec{P} \cdot \vec{Q} = (-1)(2) + (5)(4) + (2)(-9) Calculate: PQ=2+2018=0\vec{P} \cdot \vec{Q} = -2 + 20 - 18 = 0

  2. Magnitudes:

    • P=(1)2+52+22=1+25+4=30\|\vec{P}\| = \sqrt{(-1)^2 + 5^2 + 2^2} = \sqrt{1 + 25 + 4} = \sqrt{30}
    • Q=(2)2+42+(9)2=4+16+81=101\|\vec{Q}\| = \sqrt{(2)^2 + 4^2 + (-9)^2} = \sqrt{4 + 16 + 81} = \sqrt{101}
  3. Angle: cosθ=PQPQ=030101=0\cos \theta = \frac{\vec{P} \cdot \vec{Q}}{\|\vec{P}\| \|\vec{Q}\|} = \frac{0}{\sqrt{30} \cdot \sqrt{101}} = 0 Thus, θ=arccos(0)=90\theta = \arccos(0) = 90^\circ.


Case (b): P=(2,1,1)P = (2, 1, -1) and Q=(4,0,0)Q = (4, 0, 0)

  1. Dot Product: PQ=(2)(4)+(1)(0)+(1)(0)\vec{P} \cdot \vec{Q} = (2)(4) + (1)(0) + (-1)(0) Calculate: PQ=8+0+0=8\vec{P} \cdot \vec{Q} = 8 + 0 + 0 = 8

  2. Magnitudes:

    • P=(2)2+(1)2+(1)2=4+1+1=6\|\vec{P}\| = \sqrt{(2)^2 + (1)^2 + (-1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6}
    • Q=(4)2+(0)2+(0)2=16=4\|\vec{Q}\| = \sqrt{(4)^2 + (0)^2 + (0)^2} = \sqrt{16} = 4
  3. Angle: cosθ=PQPQ=864=846=26=266=63\cos \theta = \frac{\vec{P} \cdot \vec{Q}}{\|\vec{P}\| \|\vec{Q}\|} = \frac{8}{\sqrt{6} \cdot 4} = \frac{8}{4\sqrt{6}} = \frac{2}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3} θ=arccos(63)\theta = \arccos\left(\frac{\sqrt{6}}{3}\right)


Final Results:

  • (a): θ=90\theta = 90^\circ
  • (b): θ=arccos(63)\theta = \arccos\left(\frac{\sqrt{6}}{3}\right) or approximately 35.2635.26^\circ.

Let me know if you'd like more details or clarifications!


Relative Questions:

  1. How is the dot product of two vectors calculated geometrically?
  2. What is the significance of cosθ=0\cos \theta = 0 in the context of vector angles?
  3. How do the magnitudes of vectors affect their inner product?
  4. Why is the arccos\arccos function used to calculate the angle between vectors?
  5. Can vectors in higher dimensions use the same formula for angles?

Tip: Always ensure that the dot product formula is applied correctly by confirming the dimensions of the vectors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Angle Between Vectors

Formulas

cos(θ) = (P·Q) / (||P|| * ||Q||)
P·Q = Σ(Pi * Qi) for i = 1 to n
||P|| = sqrt(P1^2 + P2^2 + ... + Pn^2)

Theorems

Dot Product Properties
Relationship Between Dot Product and Cosine of Angle

Suitable Grade Level

Grades 10-12