Math Problem Statement

When the angle of elevation of the sun is 60° 12', the length of the shadow of a building on a level plane is 45.3 ft. What is the height of the building? Draw the triangle

Solution

Here is the triangle illustrating the relationship between the height of the building and the shadow. The angle of elevation is 60.260.2^\circ, with the shadow being 45.3 ft and the height of the building approximately 78.49 ft.

Do you have any questions or would you like further details?

Here are five related questions:

  1. How would the height of the building change if the angle of elevation were larger?
  2. What if the length of the shadow were shorter, how would that affect the height?
  3. How can we calculate the height using the sine or cosine functions instead?
  4. If the angle of elevation was measured inaccurately, how would that impact the height calculation?
  5. How can we use this method to calculate the height of trees or other objects?

Tip: Always double-check angle conversions (degrees and minutes to decimal degrees) to avoid small but significant errors in trigonometric calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Right Triangles
Angle of Elevation

Formulas

tan(θ) = opposite/adjacent
Conversion of degrees and minutes to decimal degrees

Theorems

Trigonometric Ratio Theorem
Pythagorean Theorem (optional)

Suitable Grade Level

Grades 9-12