Math Problem Statement

উপরোক্ত স্ট্রাকচারটি ব্লক দিয়ে তৈরী। এর সংখ্যার নিচে তিনটি ধাপ দেখানো হয়েছে, কিন্তু তার উপরের ধাপগুলো দেখানো হয়নি। (ক) পরপর ধাপগুলো কী ধরণের অক্ষরূপে গঠন করে প্রকাশ করে। (খ) সম্পূর্ণ স্ট্রাকচারটি তৈরী করতে সর্বমোট কতটি ব্লক লাগবে—সুবিধামতভাবে হিসাব কর। (গ) সংখ্যার নিচের ধাপ দুটি ব্লকের সংখ্যা, কোনো তাদের ধারার সংখ্যাগত ১২ এবং পরের ধাপে ৮ ব্লক ধারা সম্পর্কে নির্ধারণ কর।

Solution

This problem involves analyzing a structure made of blocks and answering questions related to its geometry and properties. Let me break this problem down:

Questions:

  1. Type of Symmetry (Q1):

    • Analyze the type of symmetry present in the structure.
    • The structure exhibits vertical symmetry as it can be divided into two mirror-image halves along the vertical axis passing through the middle.
  2. Number of Blocks Used (Q2):

    • Count the total number of blocks used in the entire structure.
    • The total count = 2020.
  3. Number of Blocks in Lower Rows and their Alignment (Q3):

    • Count the blocks in the lower two rows and analyze how they align.
    • Bottommost row has 1212 blocks, and the second row from the bottom has 88 blocks.

Would you like further details, visualizations, or mathematical breakdowns of the structure? Let me know! Here's how you can explore further:


  1. What is rotational symmetry? Does this structure have any?
  2. How many blocks would be needed if this structure were extended symmetrically horizontally?
  3. What is the total perimeter formed by the outer blocks of this structure?
  4. If each block is of unit size, calculate the area covered by the structure.
  5. How many blocks would be removed if one vertical layer were erased?

Tip: Always analyze structures geometrically to find symmetry and total counts efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Symmetry
Counting

Formulas

Symmetry Analysis
Total Block Count = Sum of Blocks in All Rows

Theorems

Concept of Vertical Symmetry

Suitable Grade Level

Grades 6-8