Math Problem Statement

Find the expansion for (1 - x/16)^(1/3) up to the term x^2. State the range of x for which the expansion is valid. Show that ³√(8 - x/2) = 2(1 - x/16)^(1/3). Hence, by substituting x = 2, approximate ³√7 correct to four significant figures.

Solution

Let's break down the problem step-by-step:

1. Expansion of (1x16)13(1 - \frac{x}{16})^{\frac{1}{3}} up to x2x^2

We will use the binomial expansion for (1+u)n(1 + u)^n where u=x16u = -\frac{x}{16} and n=13n = \frac{1}{3}: (1+u)n1+nu+n(n1)2u2+(1 + u)^n \approx 1 + nu + \frac{n(n-1)}{2}u^2 + \dots Substitute u=x16u = -\frac{x}{16} and n=13n = \frac{1}{3}: (1x16)131+13(x16)+13(131)2(x16)2(1 - \frac{x}{16})^{\frac{1}{3}} \approx 1 + \frac{1}{3}\left(-\frac{x}{16}\right) + \frac{\frac{1}{3}(\frac{1}{3}-1)}{2}\left(-\frac{x}{16}\right)^2

Let's simplify this: 1x48+13232x22561 - \frac{x}{48} + \frac{\frac{1}{3} \cdot -\frac{2}{3}}{2} \cdot \frac{x^2}{256} 1x4819512x21 - \frac{x}{48} - \frac{1}{9 \cdot 512} x^2 1x48x246081 - \frac{x}{48} - \frac{x^2}{4608}

2. State the range of xx for which the expansion is valid

The binomial expansion (1+u)n(1 + u)^n is valid when u<1|u| < 1: x16<1\left|-\frac{x}{16}\right| < 1 x16<1\frac{|x|}{16} < 1 x<16|x| < 16 So, the range of xx is 16<x<16-16 < x < 16.

3. Show that 8x23=2(1x16)13\sqrt[3]{8 - \frac{x}{2}} = 2(1 - \frac{x}{16})^{\frac{1}{3}}

First, express the left side: 8x23=(8x2)13\sqrt[3]{8 - \frac{x}{2}} = (8 - \frac{x}{2})^{\frac{1}{3}} Factor out 8: =813(1x16)13= 8^{\frac{1}{3}} \left(1 - \frac{x}{16}\right)^{\frac{1}{3}} Since 813=28^{\frac{1}{3}} = 2: =2(1x16)13= 2(1 - \frac{x}{16})^{\frac{1}{3}}

4. Approximate 73\sqrt[3]{7} using x=2x = 2

Set x=2x = 2 in the previous expression: [ \sqrt[3]{8 - \frac{2}{2}} = \sqrt[3]{7} ] =2(1216)13= 2(1 - \frac{2}{16})^{\frac{1}{3}} Simplify: =2(118)13= 2(1 - \frac{1}{8})^{\frac{1}{3}} =2(10.125)13= 2(1 - 0.125)^{\frac{1}{3}}

Use the binomial expansion found earlier: 2(1148×2224608)\approx 2\left(1 - \frac{1}{48} \times 2 - \frac{2^2}{4608}\right) =2(112444608)= 2\left(1 - \frac{1}{24} - \frac{4}{4608}\right) =2(10.04166670.0008681)= 2\left(1 - 0.0416667 - 0.0008681\right) =2×0.9574652= 2 \times 0.9574652 1.9149\approx 1.9149

Thus, 731.9149\sqrt[3]{7} \approx 1.9149 to four significant figures.

Would you like more details on any part of this process or have any questions?

Related Questions

  1. How would the expansion change if the power was different, say (1x16)12(1 - \frac{x}{16})^{\frac{1}{2}}?
  2. Can we approximate 73\sqrt[3]{7} using other methods such as Newton's method?
  3. How does the error of the binomial approximation change as more terms are added?
  4. Can the binomial expansion be used to approximate functions other than polynomials?
  5. How does the range of xx for convergence change if the constant inside the binomial expansion changes?

Tip

When using binomial expansions, always check the range of xx for which the expansion is valid to ensure accurate approximations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Algebra
Cube Roots
Series Expansion

Formulas

Binomial Expansion Formula: (1 + u)^n ≈ 1 + nu + [n(n-1)/2]u^2
Cube Root: ³√x = x^(1/3)

Theorems

Binomial Theorem

Suitable Grade Level

Grades 11-12 (Advanced Mathematics/Pre-Calculus)