Math Problem Statement

Find the average value of the function f(x, y, z) = y e^{-xy} over the rectangular prism 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 5.

Solution

To find the average value of the function f(x,y,z)=yexyf(x, y, z) = y e^{-xy} over the rectangular prism defined by 0x20 \leq x \leq 2, 0y20 \leq y \leq 2, and 0z50 \leq z \leq 5, we can use the formula for the average value of a function over a region DD:

Average value=1Volume of DDf(x,y,z)dV\text{Average value} = \frac{1}{\text{Volume of } D} \iiint_D f(x, y, z) \, dV

Step 1: Calculate the Volume of DD

The volume of the rectangular prism DD is given by the product of the lengths of its sides: Volume of D=(20)(20)(50)=2×2×5=20\text{Volume of } D = (2 - 0)(2 - 0)(5 - 0) = 2 \times 2 \times 5 = 20

Step 2: Set Up the Integral

The average value is then: Average value=120DyexydV\text{Average value} = \frac{1}{20} \iiint_D y e^{-xy} \, dV Since f(x,y,z)=yexyf(x, y, z) = y e^{-xy} does not depend on zz, we can separate the integral with respect to zz as follows: DyexydV=050202yexydxdydz\iiint_D y e^{-xy} \, dV = \int_0^5 \int_0^2 \int_0^2 y e^{-xy} \, dx \, dy \, dz

The integral with respect to zz will contribute a factor of 55 (as it is simply an integral over a constant with bounds 00 to 55): DyexydV=50202yexydxdy\iiint_D y e^{-xy} \, dV = 5 \int_0^2 \int_0^2 y e^{-xy} \, dx \, dy

Step 3: Evaluate the Inner Integrals

Now, we focus on the double integral: 50202yexydxdy5 \int_0^2 \int_0^2 y e^{-xy} \, dx \, dy

  1. Inner integral (with respect to xx): 02yexydx=y02exydx\int_0^2 y e^{-xy} \, dx = y \int_0^2 e^{-xy} \, dx The integral of exye^{-xy} with respect to xx is: exydx=1yexy\int e^{-xy} \, dx = -\frac{1}{y} e^{-xy} Evaluating from x=0x = 0 to x=2x = 2 gives: y(1ye2y+1y)=y1e2yy=1e2yy \left( -\frac{1}{y} e^{-2y} + \frac{1}{y} \right) = y \cdot \frac{1 - e^{-2y}}{y} = 1 - e^{-2y}

  2. Outer integral (with respect to yy): 502(1e2y)dy=5(021dy02e2ydy)5 \int_0^2 (1 - e^{-2y}) \, dy = 5 \left( \int_0^2 1 \, dy - \int_0^2 e^{-2y} \, dy \right)

    • The first part is straightforward: 021dy=y02=2\int_0^2 1 \, dy = y \Big|_0^2 = 2
    • For the second part: 02e2ydy=(12e2y)02=12(e41)=12(1e4)\int_0^2 e^{-2y} \, dy = \left( -\frac{1}{2} e^{-2y} \right) \Big|_0^2 = -\frac{1}{2} (e^{-4} - 1) = \frac{1}{2} (1 - e^{-4})

    So the double integral becomes: 5(212(1e4))=5(4+e42)=52(4+e4)5 \left( 2 - \frac{1}{2} (1 - e^{-4}) \right) = 5 \left( \frac{4 + e^{-4}}{2} \right) = \frac{5}{2} (4 + e^{-4})

Step 4: Compute the Average Value

Now we can plug this result back into our formula for the average value: Average value=12052(4+e4)=18(4+e4)=12+e48\text{Average value} = \frac{1}{20} \cdot \frac{5}{2} (4 + e^{-4}) = \frac{1}{8} (4 + e^{-4}) = \frac{1}{2} + \frac{e^{-4}}{8}

Thus, the average value of f(x,y,z)=yexyf(x, y, z) = y e^{-xy} over the specified region is: 12+e48\boxed{\frac{1}{2} + \frac{e^{-4}}{8}}

Would you like further details on any of these steps or have additional questions?


  1. What is the significance of finding an average value for a function in a region?
  2. How would the result change if the limits of integration were different?
  3. What if the function f(x,y,z)f(x, y, z) depended on zz as well?
  4. Can we generalize this approach to find the average value of any function in any region?
  5. What if f(x,y,z)f(x, y, z) involved more complex exponential terms?

Tip: For multiple integrals, carefully evaluate each integral step-by-step, starting with the innermost integral to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Average Value of a Function
Multiple Integration
Exponential Function

Formulas

Average value of a function over a region D: \( \text{Average value} = \frac{1}{\text{Volume of } D} \iiint_D f(x, y, z) \, dV \)
Volume of a rectangular prism: \( \text{Volume} = (x_2 - x_1)(y_2 - y_1)(z_2 - z_1) \)

Theorems

Fundamental Theorem of Calculus (for multiple integrals)

Suitable Grade Level

Undergraduate Calculus