Math Problem Statement

A graphing calculator is recommended. The displacement (in centimeters) of a particle s moving back and forth along a straight line is given by the equation s = 3 sin(πœ‹t) + 3 cos(πœ‹t), where t is measured in seconds. (Round your answers to two decimal places.) (a) Find the average velocity during each time period. (i) [1, 2]

Correct: Your answer is correct. cm/s (ii) [1, 1.1]

Correct: Your answer is correct. cm/s (iii) [1, 1.01]

Correct: Your answer is correct. cm/s (iv) [1, 1.001]

Incorrect: Your answer is incorrect. cm/s (b) Estimate the instantaneous velocity of the particle when t = 1.

Correct: Your answer is correct. cm/s

Solution

We are working with the displacement function of the particle given as s(t)=3sin⁑(Ο€t)+3cos⁑(Ο€t)s(t) = 3\sin(\pi t) + 3\cos(\pi t), and we need to find the average velocity over specific time intervals and estimate the instantaneous velocity at t=1t = 1.

(a) Average velocity:

The average velocity over a time interval [t1,t2][t_1, t_2] is given by the formula: vavg=s(t2)βˆ’s(t1)t2βˆ’t1v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} We already know your answers for parts (i) through (iii) are correct, so we'll focus on part (iv), and then proceed to part (b).

(iv) Interval [1,1.001][1, 1.001]

Let's calculate the average velocity for this interval:

  • t1=1t_1 = 1
  • t2=1.001t_2 = 1.001

First, we need to calculate s(1)s(1) and s(1.001)s(1.001).

s(1)=3sin⁑(Ο€β‹…1)+3cos⁑(Ο€β‹…1)=3sin⁑(Ο€)+3cos⁑(Ο€)=3(0)+3(βˆ’1)=βˆ’3 cms(1) = 3\sin(\pi \cdot 1) + 3\cos(\pi \cdot 1) = 3\sin(\pi) + 3\cos(\pi) = 3(0) + 3(-1) = -3 \, \text{cm}

Now calculate s(1.001)s(1.001): s(1.001)=3sin⁑(Ο€β‹…1.001)+3cos⁑(Ο€β‹…1.001)s(1.001) = 3\sin(\pi \cdot 1.001) + 3\cos(\pi \cdot 1.001) We need to approximate sin⁑(Ο€β‹…1.001)\sin(\pi \cdot 1.001) and cos⁑(Ο€β‹…1.001)\cos(\pi \cdot 1.001): sin⁑(Ο€β‹…1.001)β‰ˆβˆ’0.00314,cos⁑(Ο€β‹…1.001)β‰ˆβˆ’0.999995\sin(\pi \cdot 1.001) \approx -0.00314, \quad \cos(\pi \cdot 1.001) \approx -0.999995 s(1.001)=3(βˆ’0.00314)+3(βˆ’0.999995)=βˆ’0.00942βˆ’2.999985=βˆ’3.009405 cms(1.001) = 3(-0.00314) + 3(-0.999995) = -0.00942 - 2.999985 = -3.009405 \, \text{cm}

Now, apply the average velocity formula: vavg=s(1.001)βˆ’s(1)1.001βˆ’1=βˆ’3.009405βˆ’(βˆ’3)0.001=βˆ’3.009405+30.001=βˆ’0.0094050.001=βˆ’9.41 cm/sv_{\text{avg}} = \frac{s(1.001) - s(1)}{1.001 - 1} = \frac{-3.009405 - (-3)}{0.001} = \frac{-3.009405 + 3}{0.001} = \frac{-0.009405}{0.001} = -9.41 \, \text{cm/s}

So, the correct average velocity for this interval is vavg=βˆ’9.41 cm/sv_{\text{avg}} = -9.41 \, \text{cm/s}.

(b) Instantaneous velocity at t=1t = 1

The instantaneous velocity is the derivative of the displacement function s(t)s(t) with respect to time tt, i.e., v(t)=sβ€²(t)v(t) = s'(t).

The displacement function is: s(t)=3sin⁑(Ο€t)+3cos⁑(Ο€t)s(t) = 3\sin(\pi t) + 3\cos(\pi t) The derivative v(t)v(t) is: v(t)=ddt[3sin⁑(Ο€t)+3cos⁑(Ο€t)]=3Ο€cos⁑(Ο€t)βˆ’3Ο€sin⁑(Ο€t)v(t) = \frac{d}{dt} [3\sin(\pi t) + 3\cos(\pi t)] = 3\pi \cos(\pi t) - 3\pi \sin(\pi t) At t=1t = 1: v(1)=3Ο€cos⁑(Ο€β‹…1)βˆ’3Ο€sin⁑(Ο€β‹…1)=3Ο€(βˆ’1)βˆ’3Ο€(0)=βˆ’3Ο€v(1) = 3\pi \cos(\pi \cdot 1) - 3\pi \sin(\pi \cdot 1) = 3\pi (-1) - 3\pi (0) = -3\pi Approximating Ο€β‰ˆ3.14159\pi \approx 3.14159:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Differentiation
Kinematics

Formulas

Average velocity: v_avg = (s(t2) - s(t1)) / (t2 - t1)
Instantaneous velocity: v(t) = ds(t)/dt
Trigonometric identities: sin(πœ‹t), cos(πœ‹t)

Theorems

Definition of Derivative
Trigonometric Derivatives

Suitable Grade Level

Undergraduate (Calculus and Physics)