Math Problem Statement

И найти уравнение наклонной асимптоты при х стремится к бесконечности если есть)

И найти уравнение наклонной асимптоты при х стремится к бесконечности если есть)

Solution

Let's analyze the function f(x)=7x2+2x+22x1f(x) = \frac{7x^2 + 2x + 2}{2x - 1} and determine the asymptotes.

Step 1: Vertical Asymptotes

Vertical asymptotes occur where the denominator 2x1=02x - 1 = 0, provided the numerator does not also equal zero at those points.

Set the denominator to zero: 2x1=0    x=12.2x - 1 = 0 \implies x = \frac{1}{2}.

Thus, there is a vertical asymptote at: x=12.x = \frac{1}{2}.

Step 2: Oblique (Slant) Asymptote as xx \to \infty or xx \to -\infty

For rational functions where the degree of the numerator is exactly one higher than the degree of the denominator, there is a slant (oblique) asymptote.

Perform polynomial long division for: 7x2+2x+22x1.\frac{7x^2 + 2x + 2}{2x - 1}.

Division process:

  1. Divide the leading term: 7x22x=72x\frac{7x^2}{2x} = \frac{7}{2}x.
  2. Multiply 72x\frac{7}{2}x by 2x12x - 1: 72x(2x1)=7x272x.\frac{7}{2}x \cdot (2x - 1) = 7x^2 - \frac{7}{2}x.
  3. Subtract: (7x2+2x+2)(7x272x)=112x+2.(7x^2 + 2x + 2) - (7x^2 - \frac{7}{2}x) = \frac{11}{2}x + 2.
  4. Divide again: 112x2x=114\frac{\frac{11}{2}x}{2x} = \frac{11}{4}.
  5. Multiply 114\frac{11}{4} by 2x12x - 1: 114(2x1)=112x114.\frac{11}{4}(2x - 1) = \frac{11}{2}x - \frac{11}{4}.
  6. Subtract: (112x+2)(112x114)=194.\left( \frac{11}{2}x + 2 \right) - \left( \frac{11}{2}x - \frac{11}{4} \right) = \frac{19}{4}.

The quotient is: f(x)=72x+114+1942x1.f(x) = \frac{7}{2}x + \frac{11}{4} + \frac{\frac{19}{4}}{2x - 1}.

As xx \to \infty, the remainder term 1942x10\frac{\frac{19}{4}}{2x - 1} \to 0. Hence, the slant asymptote is: y=72x+114.y = \frac{7}{2}x + \frac{11}{4}.

Final Answers:

  1. Vertical Asymptote: x=12x = \frac{1}{2}.
  2. No second vertical asymptote.
  3. Oblique Asymptote as xx \to \infty: y=72x+114y = \frac{7}{2}x + \frac{11}{4}.
  4. No horizontal asymptotes, as the degree of the numerator exceeds that of the denominator.

Would you like to see detailed steps for the long division? Let me know!


Related Questions:

  1. What is the behavior of the function near x=12x = \frac{1}{2}?
  2. How would you find horizontal asymptotes for similar functions?
  3. Can a function have both horizontal and slant asymptotes? Why or why not?
  4. How does the numerator's degree affect the type of asymptote?
  5. What changes in asymptotes occur if the numerator and denominator share common roots?

Tip:

When finding oblique asymptotes, always verify the degree difference between numerator and denominator.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rational Functions
Asymptotes
Polynomial Long Division

Formulas

Vertical asymptotes occur where the denominator equals zero: 2x - 1 = 0.
Slant (oblique) asymptotes: Found using polynomial long division when the degreeУравнение наклонной асимптоты of the numerator exceeds the denominator by 1.

Theorems

Asymptote behavior of rational functions
Polynomial Long Division

Suitable Grade Level

Grades 10-12