Math Problem Statement
Get the asymptotes of (y-1)²/9 + (x+3)²/4 = 1
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Conic Sections
Ellipses
Hyperbolas
Formulas
(y - k)² / a² + (x - h)² / b² = 1 (Equation of an ellipse)
(y - k)² / a² - (x - h)² / b² = 1 (Equation of a hyperbola)
(x - h)² / b² - (y - k)² / a² = 1 (Equation of a hyperbola)
Theorems
Definition of Ellipse
Asymptotes in Hyperbolas
Suitable Grade Level
Grades 10-12
Related Recommendation
Solving Asymptotes and Conic Sections: Ellipse or Hyperbola
Asymptote Calculation for Hyperbola: \frac{(y+2)^2}{16} - \frac{(x-2)^2}{9} = 1
Find the Hyperbola Equation with Given Vertices and Asymptote
Identifying Conic Sections by Inspection of Equations
Understanding the Hyperbola Equation y² - x² = 1