Math Problem Statement
Предполагая, что ответ будет многочленом от n, сделайте предположение о его степени, подберите коэффициенты так, чтобы «сработали» база и шаг индукции и докажите получившуюся формулу для сумм 1 + 4 + 7 + . . . + (3n − 2)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Arithmetic Progression
Mathematical Induction
Quadratic Polynomial
Formulas
S(n) = 1 + 4 + 7 + ... + (3n - 2)
S(n) = \frac{n}{2} \cdot (a_1 + a_n)
S(n) = \frac{3n^2 - n}{2}
Theorems
Arithmetic Series Sum Formula
Mathematical Induction
Suitable Grade Level
Grades 9-12
Related Recommendation
Mathematical Induction for Arithmetic Series: Verify 3 + 7 + 11 + (4n - 1) = n(2n + 1)
Proof by Induction for Arithmetic Sequence: 1 + 4 + 7 + ... + (3n+1)
Sum of Arithmetic Progression: 1 + 5 + 10 + ... to 100
Inductive Proof for Sum of Arithmetic Sequence using Mathematical Induction
Use Mathematical Induction to Prove the Formula 3 + 6 + 9 + ... + 3n = (3n(n+1))/2