Math Problem Statement

In a triangle ABC , let E be the midpoint of AC and F be the midpoint of AB .

The medians BE and CF intersect at G . Let Y and Z be the midpoints of BE

and CF respectively. If the area of triangle ABC is 480 , find the area of triangle

GY Z.

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Medians of a Triangle
Centroid
Area of Triangles
Midpoints

Formulas

Area of triangle GYZ = (1/4) × Area of smaller triangle
Area of smaller triangle = Total area of triangle / 6

Theorems

The centroid divides a triangle into six equal-area triangles
The centroid divides each median in a 2:1 ratio

Suitable Grade Level

Grades 9-11