Math Problem Statement

Calculate the area between the graphs of the sine and cosine functions in the interval [0,2π].

Solution

To find the area between the graphs of y=sin(x)y = \sin(x) and y=cos(x)y = \cos(x) on the interval [0,2π][0, 2\pi], we need to determine where these functions intersect within the interval, then integrate accordingly.

Step-by-Step Solution:

  1. Find the Intersection Points: The points of intersection occur where sin(x)=cos(x)\sin(x) = \cos(x). This simplifies to: tan(x)=1\tan(x) = 1 Solving x=π4x = \frac{\pi}{4} within the interval [0,2π][0, 2\pi], we find additional solutions at x=5π4x = \frac{5\pi}{4} by symmetry.

  2. Set Up the Integrals: We split the interval [0,2π][0, 2\pi] into three parts: [0,π4][0, \frac{\pi}{4}], [π4,5π4][\frac{\pi}{4}, \frac{5\pi}{4}], and [5π4,2π][\frac{5\pi}{4}, 2\pi].

    • On [0,π4][0, \frac{\pi}{4}]: cos(x)sin(x)\cos(x) \geq \sin(x)
    • On [π4,5π4][\frac{\pi}{4}, \frac{5\pi}{4}]: sin(x)cos(x)\sin(x) \geq \cos(x)
    • On [5π4,2π][\frac{5\pi}{4}, 2\pi]: cos(x)sin(x)\cos(x) \geq \sin(x)
  3. Compute Each Integral Separately: The area AA between the curves is the sum of the absolute differences between sin(x)\sin(x) and cos(x)\cos(x) over these intervals:

    A=0π4(cos(x)sin(x))dx+π45π4(sin(x)cos(x))dx+5π42π(cos(x)sin(x))dxA = \int_0^{\frac{\pi}{4}} (\cos(x) - \sin(x)) \, dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin(x) - \cos(x)) \, dx + \int_{\frac{5\pi}{4}}^{2\pi} (\cos(x) - \sin(x)) \, dx

  4. Evaluate Each Integral:

    • For 0π4(cos(x)sin(x))dx\int_0^{\frac{\pi}{4}} (\cos(x) - \sin(x)) \, dx: =[sin(x)+cos(x)]0π4=(sin(π4)+cos(π4))(0+1)=21= \left[ \sin(x) + \cos(x) \right]_0^{\frac{\pi}{4}} = (\sin(\frac{\pi}{4}) + \cos(\frac{\pi}{4})) - (0 + 1) = \sqrt{2} - 1

    • For π45π4(sin(x)cos(x))dx\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin(x) - \cos(x)) \, dx: =[cos(x)sin(x)]π45π4=(cos(5π4)sin(5π4))(cos(π4)sin(π4))= \left[-\cos(x) - \sin(x) \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = \left(-\cos(\frac{5\pi}{4}) - \sin(\frac{5\pi}{4})\right) - \left(-\cos(\frac{\pi}{4}) - \sin(\frac{\pi}{4})\right) Substituting values, we get: =(2+2)=22= (\sqrt{2} + \sqrt{2}) = 2\sqrt{2}

    • For 5π42π(cos(x)sin(x))dx\int_{\frac{5\pi}{4}}^{2\pi} (\cos(x) - \sin(x)) \, dx: [ = \left[ \sin(x) + \cos(x) \right]_{\frac{5\pi}{4}}^{2\pi} = (0 + 1) - (-\sqrt{2}) = \sqrt{2} -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Trigonometric Functions
Area Between Curves

Formulas

Area between two curves formula: A = ∫[a, b] |f(x) - g(x)| dx
Intersection condition for sine and cosine: sin(x) = cos(x)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12