Math Problem Statement

A record club has found that the marginal​ profit, Upper P prime left parenthesis x right parenthesisP′(x)​, in​ cents, is given by Upper P prime left parenthesis x right parenthesis equals negative 0.0005 x cubed plus 0.22 x squared plus 53.9 xP′(x)=−0.0005x3+0.22x2+53.9x for x less than or equals 500x≤500​, where x is the number of members currently enrolled in the club. Approximate the total profit when 300300 members are enrolled by computing the sum Summation from i equals 1 to 6 Upper P prime left parenthesis x Subscript i Baseline right parenthesis Upper Delta x∑i=16P′xiΔx with Upper Delta x equals 50Δx=50.

Solution

To approximate the total profit when 300 members are enrolled using the given marginal profit function, we can compute the summation as described:

Given: P(x)=0.0005x3+0.22x2+53.9x, Δx=50, x ranges from 0 to 300.\text{Given: } P'(x) = -0.0005x^3 + 0.22x^2 + 53.9x,\ \Delta x = 50,\ x \text{ ranges from } 0 \text{ to } 300.

We divide the interval [0,300][0, 300] into 6 subintervals, each of width Δx=50\Delta x = 50. For xix_i, we take the endpoints of each subinterval:

x1=50, x2=100, x3=150, x4=200, x5=250, x6=300.x_1 = 50,\ x_2 = 100,\ x_3 = 150,\ x_4 = 200,\ x_5 = 250,\ x_6 = 300.

The sum is given by:

Total Profiti=16P(xi)Δx.\text{Total Profit} \approx \sum_{i=1}^6 P'(x_i) \Delta x.

Step-by-Step Computation:

  1. Compute P(xi)P'(x_i) for each xix_i: P(x)=0.0005x3+0.22x2+53.9x.P'(x) = -0.0005x^3 + 0.22x^2 + 53.9x.

    • For x1=50x_1 = 50: P(50)=0.0005(50)3+0.22(50)2+53.9(50)=0.0005(125000)+0.22(2500)+2695=62.5+550+2695=3182.5.P'(50) = -0.0005(50)^3 + 0.22(50)^2 + 53.9(50) = -0.0005(125000) + 0.22(2500) + 2695 = -62.5 + 550 + 2695 = 3182.5.

    • For x2=100x_2 = 100: P(100)=0.0005(100)3+0.22(100)2+53.9(100)=0.0005(1000000)+0.22(10000)+5390=500+2200+5390=7090.P'(100) = -0.0005(100)^3 + 0.22(100)^2 + 53.9(100) = -0.0005(1000000) + 0.22(10000) + 5390 = -500 + 2200 + 5390 = 7090.

    • For x3=150x_3 = 150: P(150)=0.0005(150)3+0.22(150)2+53.9(150)=0.0005(3375000)+0.22(22500)+8085=1687.5+4950+8085=11347.5.P'(150) = -0.0005(150)^3 + 0.22(150)^2 + 53.9(150) = -0.0005(3375000) + 0.22(22500) + 8085 = -1687.5 + 4950 + 8085 = 11347.5.

    • For x4=200x_4 = 200: P(200)=0.0005(200)3+0.22(200)2+53.9(200)=0.0005(8000000)+0.22(40000)+10780=4000+8800+10780=15580.P'(200) = -0.0005(200)^3 + 0.22(200)^2 + 53.9(200) = -0.0005(8000000) + 0.22(40000) + 10780 = -4000 + 8800 + 10780 = 15580.

    • For x5=250x_5 = 250: P(250)=0.0005(250)3+0.22(250)2+53.9(250)=0.0005(15625000)+0.22(62500)+13475=7812.5+13750+13475=19412.5.P'(250) = -0.0005(250)^3 + 0.22(250)^2 + 53.9(250) = -0.0005(15625000) + 0.22(62500) + 13475 = -7812.5 + 13750 + 13475 = 19412.5.

    • For x6=300x_6 = 300: P(300)=0.0005(300)3+0.22(300)2+53.9(300)=0.0005(27000000)+0.22(90000)+16170=13500+19800+16170=22470.P'(300) = -0.0005(300)^3 + 0.22(300)^2 + 53.9(300) = -0.0005(27000000) + 0.22(90000) + 16170 = -13500 + 19800 + 16170 = 22470.

  2. Multiply each P(xi)P'(x_i) by Δx=50\Delta x = 50: P(50)Δx=3182.5×50=159125,P'(50) \Delta x = 3182.5 \times 50 = 159125, P(100)Δx=7090×50=354500,P'(100) \Delta x = 7090 \times 50 = 354500, P(150)Δx=11347.5×50=567375,P'(150) \Delta x = 11347.5 \times 50 = 567375, P(200)Δx=15580×50=779000,P'(200) \Delta x = 15580 \times 50 = 779000, P(250)Δx=19412.5×50=970625,P'(250) \Delta x = 19412.5 \times 50 = 970625, P(300)Δx=22470×50=1123500.P'(300) \Delta x = 22470 \times 50 = 1123500.

  3. Sum these values: Total Profit=159125+354500+567375+779000+970625+1123500=3858125cents.\text{Total Profit} = 159125 + 354500 + 567375 + 779000 + 970625 + 1123500 = 3858125 \, \text{cents}.

Convert to Dollars:

Total Profit=3858125cents=38581.25dollars.\text{Total Profit} = 3858125 \, \text{cents} = 38581.25 \, \text{dollars}.

Final Answer:

The total profit when 300 members are enrolled is approximately $38,581.25.

Would you like further clarifications or detailed steps for any part of this calculation?


Relative Questions:

  1. How does the marginal profit function relate to total profit in this problem?
  2. Why is the interval [0,300][0, 300] divided into 6 subintervals?
  3. What would happen to the accuracy if smaller intervals were chosen?
  4. How can this summation method approximate an integral?
  5. Can we calculate the exact total profit by integrating P(x)P'(x)?

Tip:

When approximating sums, smaller intervals (Δx\Delta x) improve accuracy because they better capture the curve of the function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Marginal Analysis
Numerical Approximation
Definite Integral Approximation

Formulas

P′(x) = −0.0005x³ + 0.22x² + 53.9x
Sum approximation: ∑ P′(xi)Δx
Profit in dollars: Total profit in cents ÷ 100

Theorems

Fundamental Theorem of Calculus (Approximation)

Suitable Grade Level

Grades 11-12 and introductory college-level calculus