Math Problem Statement

When θ is small, find the approximate values of: a) (1 - cos 2θ) / (θ sin θ), b) (cos 6θ - 1) / (sin 3θ tan θ), c) (θ tan θ) / (1 - cos θ).

Solution

To solve this problem, we are asked to find approximate values for the given trigonometric expressions when θ\theta is small. In these cases, we can use small-angle approximations for sine, cosine, and tangent. These approximations are:

  • sinθθ\sin \theta \approx \theta
  • cosθ1θ22\cos \theta \approx 1 - \frac{\theta^2}{2}
  • tanθθ\tan \theta \approx \theta

Let's solve each part using these approximations:

Part (a): 1cos2θθsinθ\frac{1 - \cos 2\theta}{\theta \sin \theta}

  1. For small θ\theta, we use the approximation for cos2θ\cos 2\theta: cos2θ12θ2\cos 2\theta \approx 1 - 2\theta^2 So, 1cos2θ1(12θ2)=2θ21 - \cos 2\theta \approx 1 - (1 - 2\theta^2) = 2\theta^2

  2. Also, sinθθ\sin \theta \approx \theta. Therefore, the expression becomes: 1cos2θθsinθ2θ2θθ=2\frac{1 - \cos 2\theta}{\theta \sin \theta} \approx \frac{2\theta^2}{\theta \cdot \theta} = 2

Thus, for small θ\theta, the expression in part (a) approximately equals 2.

Part (b): cos6θ1sin3θtanθ\frac{\cos 6\theta - 1}{\sin 3\theta \tan \theta}

  1. For small θ\theta, cos6θ118θ2\cos 6\theta \approx 1 - 18\theta^2. Thus: cos6θ118θ2\cos 6\theta - 1 \approx -18\theta^2

  2. sin3θ3θ\sin 3\theta \approx 3\theta and tanθθ\tan \theta \approx \theta, so: sin3θtanθ3θ2\sin 3\theta \tan \theta \approx 3\theta^2

  3. Substituting into the expression, we get: cos6θ1sin3θtanθ18θ23θ2=6\frac{\cos 6\theta - 1}{\sin 3\theta \tan \theta} \approx \frac{-18\theta^2}{3\theta^2} = -6

Thus, for small θ\theta, the expression in part (b) approximately equals 6-6.

Part (c): θtanθ1cosθ\frac{\theta \tan \theta}{1 - \cos \theta}

  1. tanθθ\tan \theta \approx \theta, so θtanθθ2\theta \tan \theta \approx \theta^2.

  2. Using cosθ1θ22\cos \theta \approx 1 - \frac{\theta^2}{2}, we have: 1cosθ1(1θ22)=θ221 - \cos \theta \approx 1 - \left(1 - \frac{\theta^2}{2}\right) = \frac{\theta^2}{2}

  3. Substituting, we get: θtanθ1cosθθ2θ22=2\frac{\theta \tan \theta}{1 - \cos \theta} \approx \frac{\theta^2}{\frac{\theta^2}{2}} = 2

Thus, for small θ\theta, the expression in part (c) approximately equals 2.


Summary of approximate values:

  • (a) 1cos2θθsinθ2\frac{1 - \cos 2\theta}{\theta \sin \theta} \approx 2
  • (b) cos6θ1sin3θtanθ6\frac{\cos 6\theta - 1}{\sin 3\theta \tan \theta} \approx -6
  • (c) θtanθ1cosθ2\frac{\theta \tan \theta}{1 - \cos \theta} \approx 2

Let me know if you need more details or clarifications!


Here are 5 additional related questions for practice:

  1. What is the small-angle approximation for sin2θ\sin 2\theta and tan2θ\tan 2\theta?
  2. How does the approximation for cosθ\cos \theta change if higher-order terms are included?
  3. Why is θ\theta assumed to be small in these approximations?
  4. Can you derive the small-angle approximation for sin(3θ)\sin(3\theta) using a series expansion?
  5. How does the accuracy of small-angle approximations vary as θ\theta increases?

Tip:

Small-angle approximations are extremely useful in physics, especially in mechanics and wave theory, where angles are often small enough to simplify trigonometric functions for easier computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Small-Angle Approximations

Formulas

sin(θ) ≈ θ
cos(θ) ≈ 1 - θ^2/2
tan(θ) ≈ θ

Theorems

Small Angle Approximation

Suitable Grade Level

Grade 11-12