Math Problem Statement

Which of the following represents the angle between the vectors i + j + k and i + j - k?

Solution

Let's analyze the problem presented in the image:

You are given two vectors: a=i^+j^+k^\mathbf{a} = \hat{i} + \hat{j} + \hat{k} and b=i^+j^k^.\mathbf{b} = \hat{i} + \hat{j} - \hat{k}. The question asks for the angle between these two vectors. To find the angle θ\theta, we use the formula for the dot product of two vectors: ab=abcosθ.\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta.

Step 1: Calculate the dot product ab\mathbf{a} \cdot \mathbf{b}

The dot product is calculated as: ab=(1)(1)+(1)(1)+(1)(1)=1+11=1.\mathbf{a} \cdot \mathbf{b} = (1)(1) + (1)(1) + (1)(-1) = 1 + 1 - 1 = 1.

Step 2: Calculate the magnitudes of a\mathbf{a} and b\mathbf{b}

The magnitude of a vector v=vxi^+vyj^+vzk^\mathbf{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} is given by: v=vx2+vy2+vz2.|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}. For a\mathbf{a}, we have: a=12+12+12=3.|\mathbf{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}. For b\mathbf{b}, we have: [ |\mathbf{b}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Angles Between Vectors

Formulas

Dot Product: a · b = |a||b|cos(θ)
Magnitude of a Vector: |v| = √(v_x² + v_y² + v_z²)

Theorems

Cosine Rule for Dot Product

Suitable Grade Level

Grades 11-12 / College-level Math