Math Problem Statement

*y=*log2(*x^2+*1)

Solution

To analyze the function y=log2(x2+1)y = \log_2(x^2 + 1), let's delve into several key aspects:

  1. Domain: The domain of the function is the set of all x for which the argument of the logarithm is positive.\text{The domain of the function is the set of all } x \text{ for which the argument of the logarithm is positive.} x2+1>0for all real numbers xx^2 + 1 > 0 \quad \text{for all real numbers } x Thus, the domain is (,).\text{Thus, the domain is } (-\infty, \infty).

  2. Range: The range of the function is determined by the values that y can take.\text{The range of the function is determined by the values that } y \text{ can take.} x20    x2+11x^2 \geq 0 \implies x^2 + 1 \geq 1 log2(x2+1)log2(1)=0\log_2(x^2 + 1) \geq \log_2(1) = 0 As x2,  x2+1    log2(x2+1)\text{As } x^2 \to \infty, \; x^2 + 1 \to \infty \implies \log_2(x^2 + 1) \to \infty Thus, the range is [0,).\text{Thus, the range is } [0, \infty).

  3. Behavior and Symmetry: Since x2 is an even function, x2+1 is also an even function.\text{Since } x^2 \text{ is an even function, } x^2 + 1 \text{ is also an even function.} log2(x2+1) is also even, which means it is symmetric about the y-axis.\log_2(x^2 + 1) \text{ is also even, which means it is symmetric about the y-axis.} log2(x2+1)=log2(x2+1)\log_2(-x^2 + 1) = \log_2(x^2 + 1)

  4. Intercepts:

    • y-intercept: Set x=0    y=log2(02+1)=log2(1)=0\text{Set } x = 0 \implies y = \log_2(0^2 + 1) = \log_2(1) = 0 The y-intercept is (0,0).\text{The y-intercept is } (0, 0).
    • x-intercepts: There are no x-intercepts because log2(x2+1)0 for all x.\text{There are no x-intercepts because } \log_2(x^2 + 1) \geq 0 \text{ for all } x.
  5. Asymptotes: There are no vertical asymptotes since the logarithm’s argument is always positive.\text{There are no vertical asymptotes since the logarithm's argument is always positive.} There are no horizontal asymptotes since log2(x2+1) increases without bound as x.\text{There are no horizontal asymptotes since } \log_2(x^2 + 1) \text{ increases without bound as } x \to \infty.

  6. First Derivative (to find critical points and analyze increasing/decreasing behavior): y=ddxlog2(x2+1)y' = \frac{d}{dx} \log_2(x^2 + 1) y=1ln(2)1x2+12x=2x(x2+1)ln(2)y' = \frac{1}{\ln(2)} \cdot \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{(x^2 + 1) \ln(2)} Setting y=0 gives x=0.\text{Setting } y' = 0 \text{ gives } x = 0. For x>0,y>0 and for x<0,y<0.\text{For } x > 0, y' > 0 \text{ and for } x < 0, y' < 0. Thus, the function is increasing for x>0 and decreasing for x<0.\text{Thus, the function is increasing for } x > 0 \text{ and decreasing for } x < 0.

  7. Second Derivative (to determine concavity): y=ddx(2x(x2+1)ln(2))y'' = \frac{d}{dx} \left( \frac{2x}{(x^2 + 1) \ln(2)} \right) y=2((x2+1)ln(2)2x2)((x2+1)ln(2))2=2(ln(2)x2ln(2))((x2+1)ln(2))2y'' = \frac{2((x^2 + 1) \ln(2) - 2x^2)}{((x^2 + 1) \ln(2))^2} = \frac{2(\ln(2) - x^2 \ln(2))}{((x^2 + 1) \ln(2))^2} y=2(1x2)(x2+1)2ln(2)y'' = \frac{2(1 - x^2)}{(x^2 + 1)^2 \ln(2)} Setting y=0 gives x2=1    x=±1.\text{Setting } y'' = 0 \text{ gives } x^2 = 1 \implies x = \pm 1.

    For x<1,y>0    concave up.\text{For } |x| < 1, y'' > 0 \implies \text{concave up}. For x>1,y<0    concave down.\text{For } |x| > 1, y'' < 0 \implies \text{concave down}.

Would you like any additional details or have any questions about this analysis?

Here are 8 related questions to expand on this information:

  1. How do you find the domain of a logarithmic function?
  2. What are the properties of logarithms?
  3. Can you explain how to determine the range of a function?
  4. How do you find the intercepts of a function?
  5. What are the steps to find the first derivative of a function?
  6. How does the first derivative test help in finding local maxima and minima?
  7. What does the second derivative tell us about the concavity of a function?
  8. How can you sketch the graph of a logarithmic function given its key characteristics?

Tip: Understanding the properties of logarithms can greatly simplify solving and analyzing logarithmic functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic functions
Domain and range
Symmetry of functions
Derivatives and concavity

Formulas

Logarithm properties
Derivative formulas

Theorems

-

Suitable Grade Level

Advanced High School