Math Problem Statement

f(x) = sqrt(x + 5) and g(x) = (x + 2)(x - 3), find: a. (f + g)(x), b. (f - g)(x), c. (f * g)(x), d. (f / g)(x)

Solution

We are given two functions f(x)=x+5f(x) = \sqrt{x+5} and g(x)=(x+2)(x3)g(x) = (x+2)(x-3), and we need to compute the following:

a. (f+g)(x)(f+g)(x)

This is the sum of the two functions: (f+g)(x)=f(x)+g(x)(f+g)(x) = f(x) + g(x) Substitute the values of f(x)f(x) and g(x)g(x): (f+g)(x)=x+5+(x+2)(x3)(f+g)(x) = \sqrt{x+5} + (x+2)(x-3) Expand g(x)g(x): g(x)=(x+2)(x3)=x23x+2x6=x2x6g(x) = (x+2)(x-3) = x^2 - 3x + 2x - 6 = x^2 - x - 6 Thus, (f+g)(x)=x+5+x2x6(f+g)(x) = \sqrt{x+5} + x^2 - x - 6

b. (fg)(x)(f-g)(x)

This is the difference of the two functions: (fg)(x)=f(x)g(x)(f-g)(x) = f(x) - g(x) Substitute the values of f(x)f(x) and g(x)g(x): (fg)(x)=x+5(x2x6)(f-g)(x) = \sqrt{x+5} - (x^2 - x - 6) Simplify: (fg)(x)=x+5x2+x+6(f-g)(x) = \sqrt{x+5} - x^2 + x + 6

c. (fg)(x)(f \cdot g)(x)

This is the product of the two functions: (fg)(x)=f(x)g(x)(f \cdot g)(x) = f(x) \cdot g(x) Substitute the values of f(x)f(x) and g(x)g(x): (fg)(x)=x+5(x2x6)(f \cdot g)(x) = \sqrt{x+5} \cdot (x^2 - x - 6)

d. (fg)(x)\left( \frac{f}{g} \right)(x)

This is the quotient of the two functions: (fg)(x)=f(x)g(x)\left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} Substitute the values of f(x)f(x) and g(x)g(x): (fg)(x)=x+5x2x6\left( \frac{f}{g} \right)(x) = \frac{\sqrt{x+5}}{x^2 - x - 6}

Would you like me to provide further details or evaluate any specific part?

Here are 5 related questions to consider:

  1. What is the domain of the function f(x)=x+5f(x) = \sqrt{x+5}?
  2. How does expanding g(x)=(x+2)(x3)g(x) = (x+2)(x-3) affect the combined functions?
  3. What is the significance of function composition in algebraic functions?
  4. How can we find the points of intersection between f(x)f(x) and g(x)g(x)?
  5. What methods are used to simplify or solve the quotient f(x)g(x)\frac{f(x)}{g(x)}?

Tip: Always check the domain restrictions for combined functions, especially when dealing with square roots and denominators.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Addition
Function Subtraction
Function Multiplication
Function Division
Algebra
Quadratic Expansion

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f * g)(x) = f(x) * g(x)
(f / g)(x) = f(x) / g(x)

Theorems

Quadratic Expansion: (x + a)(x + b) = x^2 + (a + b)x + ab
Square Root Function Domain Restrictions

Suitable Grade Level

Grades 10-12