Math Problem Statement

1. Пусть существует f'(x) на (0,+∞), существует lim f'(x), f(x) = o(x) при x→+∞. Верно ли, что lim f'(x) = 0? 2. Доказать, что f(x) = d^80/dx^80(e^(-x^80)) имеет 80 положительных корней. 3. Исследовать на сходимость последовательность {x_n}, если x_n = arctan(x_{n-1}), x_0 = 1/2. 4. Найти разложение в ряд Тейлора: (1 + x)^-1 - 1, в точке x_0 = 0, до члена с x^4. 5. Найти предел: lim x→+∞ ln(1 + sin^2(2x)) / ln(1 + sin^2(4x)).

Solution

The uploaded file contains a series of mathematical problems. Here's the transcription of the text and an overview of the tasks:


Problems:

  1. Пусть существует f(x)f'(x) на (0,+)(0, +\infty), существует limx+f(x)\lim_{x \to +\infty} f'(x), f(x)=o(x)f(x) = o(x) при x+x \to +\infty. Верно ли, что limx+f(x)=0\lim_{x \to +\infty} f'(x) = 0?

  2. Доказать, что
    f(x)=d80dx80(ex80)f(x) = \frac{d^{80}}{dx^{80}}(e^{-x^{80}})
    имеет 80 положительных корней.

  3. Исследовать на сходимость последовательность
    {xn},xn=arctanxn1,x0=12.\{x_n\}, \, x_n = \arctan x_{n-1}, \, x_0 = \frac{1}{2}.

  4. Найти разложение в ряд Тейлора:
    (1+x)11,(1 + x)^{-1} - 1,
    в точке x0=0x_0 = 0, до члена с x4x^4.

  5. Найти предел:
    limx+ln(1+sin22x)ln(1+sin24x).\lim_{x \to +\infty} \frac{\ln(1 + \sin^2 2x)}{\ln(1 + \sin^2 4x)}.


Let me know which specific problem you'd like to solve first, or I can work on them one by one. Would you like a detailed solution for all of them?


To deepen understanding, here are some exploratory questions:

  1. How does the condition f(x)=o(x)f(x) = o(x) affect the behavior of limx+f(x)\lim_{x \to +\infty} f'(x)?
  2. What are the general properties of derivatives of exponential functions, especially ex80e^{-x^{80}}?
  3. Why does the arctangent sequence converge, and how is the fixed point determined mathematically?
  4. What are the rules for expanding rational functions like (1+x)1(1 + x)^{-1} in a Taylor series?
  5. How do trigonometric oscillations influence the evaluation of limits with logarithms?

Tip:

For Taylor series, ensure you calculate derivatives systematically and evaluate them precisely at the expansion point.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits and Asymptotic Behavior
Higher-order Derivatives
Sequences and Convergence
Taylor Series Expansion
Logarithmic and Trigonometric Limits

Formulas

f'(x), lim x→+∞ f(x) = o(x)
Taylor series formula: f(x) = Σ f^n(a)/n! * (x-a)^n
Logarithmic identities: ln(a*b) = ln(a) + ln(b)

Theorems

Big-O notation and asymptotics
Fixed point theorem for iterative sequences
Properties of exponential functions and derivatives

Suitable Grade Level

University-level (Advanced Calculus and Analysis)