Math Problem Statement

Solve the following fraction addition and subtraction problems: 1) 3/8 + 1/2, 2) 2/3 + 1/5, 3) 2/8 + 1/2, 4) 3/8 - 2/3, 5) 3/10 - 2/5

Solution

Let's solve the problems shown in the image.

6) 38+12\frac{3}{8} + \frac{1}{2}

To add these fractions, we need a common denominator. The least common denominator (LCD) for 8 and 2 is 8.

Convert 12\frac{1}{2} to have a denominator of 8: 12=48\frac{1}{2} = \frac{4}{8}

Now add the fractions: 38+48=78\frac{3}{8} + \frac{4}{8} = \frac{7}{8}

7) 23+15\frac{2}{3} + \frac{1}{5}

The LCD for 3 and 5 is 15.

Convert each fraction: 23=1015,15=315\frac{2}{3} = \frac{10}{15}, \quad \frac{1}{5} = \frac{3}{15}

Add the fractions: 1015+315=1315\frac{10}{15} + \frac{3}{15} = \frac{13}{15}

8) 28+12\frac{2}{8} + \frac{1}{2}

The LCD for 8 and 2 is 8.

Convert 12\frac{1}{2} to have a denominator of 8: 12=48\frac{1}{2} = \frac{4}{8}

Add the fractions: 28+48=68=34\frac{2}{8} + \frac{4}{8} = \frac{6}{8} = \frac{3}{4}

9) 3823\frac{3}{8} - \frac{2}{3}

The LCD for 8 and 3 is 24.

Convert each fraction: 38=924,23=1624\frac{3}{8} = \frac{9}{24}, \quad \frac{2}{3} = \frac{16}{24}

Subtract the fractions: 9241624=724\frac{9}{24} - \frac{16}{24} = -\frac{7}{24}

10) 31025\frac{3}{10} - \frac{2}{5}

The LCD for 10 and 5 is 10.

Convert 25\frac{2}{5} to have a denominator of 10: 25=410\frac{2}{5} = \frac{4}{10}

Subtract the fractions: 310410=110\frac{3}{10} - \frac{4}{10} = -\frac{1}{10}

Final Answers:

  1. 78\frac{7}{8}
  2. 1315\frac{13}{15}
  3. 34\frac{3}{4}
  4. 724-\frac{7}{24}
  5. 110-\frac{1}{10}

Would you like any details on these calculations, or do you have any questions?


Related Questions:

  1. How do you find the least common denominator of two fractions?
  2. What is the difference between adding and subtracting fractions?
  3. Can a fraction's numerator be larger than its denominator?
  4. How do you convert an improper fraction to a mixed number?
  5. What is the process of simplifying fractions?

Tip: Always simplify fractions to their lowest terms unless instructed otherwise.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Addition of Fractions
Subtraction of Fractions

Formulas

Finding a common denominator
Addition of fractions: a/b + c/d = (ad + bc)/bd
Subtraction of fractions: a/b - c/d = (ad - bc)/bd

Theorems

-

Suitable Grade Level

Grades 4-6