Math Problem Statement
Carilah sudut lancip antara permukaan-permukaan xy^z=3x+z^2 dan 3x^2-y^2+2z=1, dititik (1, -2, 1)
Solution
Untuk mencari sudut antara dua permukaan, kita perlu mencari gradien dari kedua permukaan pada titik yang diberikan, kemudian menggunakan rumus untuk sudut antara dua vektor gradien tersebut.
Diberikan dua permukaan:
Pada titik , kita akan mencari gradien dari kedua permukaan tersebut:
1. Gradien dari :
Turunan parsial dari :
Kita hitung turunan parsial masing-masing: [ f_z = \frac{\partial (xy^z - 3x - z^2)}{\partial z} = xy^{z-1}
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Partial Derivatives
Gradient Vectors
Vector Calculus
Formulas
f_x = ∂f/∂x, f_y = ∂f/∂y, f_z = ∂f/∂z (for gradient)
Angle between vectors: cos(θ) = (∇f • ∇g) / (|∇f| |∇g|)
Theorems
Dot Product of Vectors
Gradient Theorem
Suitable Grade Level
Undergraduate (Calculus Level)
Related Recommendation
Calculate Acute Angle Between Surfaces xy^2z = 3x + z^2 and 3x^2 - y^2 + 2z = 1 at Point (1, -2, 1)
Find the Angle Between Surfaces x^2+y^2+z^2=25 and x^2+y^2-z-5 at (3,0,4)
Find the Acute Angle Between Planes -2y + z = -2 and -3x + 3y = -5
Acute Angle Between Planes 3x - y + 2z = 5 and x + 3y - 3z = 5
Find the Acute Angle Between Curves 2y^2 = 9x and 3x^2 = -4y