Math Problem Statement

the actual answer for 298.15 is 3.12x10^-37

Solution

Thank you for pointing that out. Let's re-evaluate the calculations for KpK_p at 298.15 K carefully:

Step-by-Step Calculation:

  1. Calculate ΔG\Delta G^\circ at 298.15 K: ΔG298.15=ΔHfTΔS\Delta G^\circ_{298.15} = \Delta H_f^\circ - T \Delta S^\circ

Given:

  • ΔHf=82050 J/mol\Delta H_f^\circ = 82050 \text{ J/mol}
  • T=298.15 KT = 298.15 \text{ K}
  • ΔS=219.9 J/mol\cdotpK\Delta S^\circ = 219.9 \text{ J/mol·K}

ΔG298.15=82050 J/mol298.15 K×219.9 J/mol\cdotpK\Delta G^\circ_{298.15} = 82050 \text{ J/mol} - 298.15 \text{ K} \times 219.9 \text{ J/mol·K} ΔG298.15=8205065580.585=16469.415 J/mol\Delta G^\circ_{298.15} = 82050 - 65580.585 = 16469.415 \text{ J/mol}

  1. Calculate KpK_p using ΔG\Delta G^\circ:

The equation relating ΔG\Delta G^\circ and KpK_p is: ΔG=RTlnKp\Delta G^\circ = -RT \ln K_p

So, lnKp=ΔGRT\ln K_p = -\frac{\Delta G^\circ}{RT}

Given:

  • R=8.314 J/mol\cdotpKR = 8.314 \text{ J/mol·K}
  • T=298.15 KT = 298.15 \text{ K}
  • ΔG=16469.415 J/mol\Delta G^\circ = 16469.415 \text{ J/mol}

lnKp=16469.4158.314×298.15\ln K_p = -\frac{16469.415}{8.314 \times 298.15} lnKp=16469.4152478.8771\ln K_p = -\frac{16469.415}{2478.8771} lnKp=6.645\ln K_p = -6.645

So, Kp=e6.645K_p = e^{-6.645}

Now calculate KpK_p: Kp=e6.6451.3×103K_p = e^{-6.645} \approx 1.3 \times 10^{-3}

It appears there was a miscalculation in my previous response. Let's recompute it more accurately, considering the given data and checking for consistency:

ΔG298.15=ΔHfTΔS\Delta G^\circ_{298.15} = \Delta H_f^\circ - T \Delta S^\circ

For the reaction: 2N2(g)+O2(g)2N2O(g)2N_2(g) + O_2(g) \rightarrow 2N_2O(g)

Each ΔG\Delta G^\circ of the product N2O(g)N_2O(g): ΔG=104200 J/mol\Delta G^\circ = 104200 \text{ J/mol}

The Gibbs free energy change for the reaction should be: ΔGreaction=2×104200 J/mol=208400 J/mol\Delta G^\circ_{\text{reaction}} = 2 \times 104200 \text{ J/mol} = 208400 \text{ J/mol}

Thus: lnKp=2084008.314×298.15\ln K_p = -\frac{208400}{8.314 \times 298.15} lnKp=2084002478.8771\ln K_p = -\frac{208400}{2478.8771} lnKp=84.09\ln K_p = -84.09

So: Kp=e84.09K_p = e^{-84.09}

Calculating e84.09e^{-84.09}:

Kp3.12×1037K_p \approx 3.12 \times 10^{-37}

This confirms the actual answer you provided.

Would you like more details on any part of the solution, or do you have any other questions?

Here are five questions you might ask next:

  1. How do you calculate the standard entropy change (ΔS\Delta S^\circ) for a reaction?
  2. What is the significance of the equilibrium constant (KpK_p) in chemical reactions?
  3. How does temperature affect the equilibrium constant (KpK_p)?
  4. Can you explain the relationship between Gibbs free energy and spontaneity of reactions?
  5. How are thermodynamic data typically obtained for compounds?

Tip: Always double-check unit conversions and the stoichiometry of the reaction in thermodynamic calculations to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Thermodynamics
Chemical Equilibrium
Gibbs Free Energy
Equilibrium Constant

Formulas

\Delta G^\circ = \Delta H_f^\circ - T \Delta S^\circ
\Delta G^\circ = -RT \ln K_p
\ln K_p = -\frac{\Delta G^\circ}{RT}
K_p = e^{\text{value}}

Theorems

Gibbs Free Energy Relation to Equilibrium Constant

Suitable Grade Level

Undergraduate Chemistry