f:R→R, f(x) = |3x - 1| + |5 - x| + |x - 2|. 1. Olduğuna göre, f(-2) kaçtır? A) 15 B) 16 C) 17 D) 18 E) 19. f:R→R, f(2x + a) = 8 - 5x olmak üzere f(1) = -2 olduğuna göre 2. f(5) değeri kaçtır? A) -12 B) -8 C) -2 D) 4 E) 8
Solution
Let’s solve the given problems step by step:
1. Problem:
We are given the function: f(x)=∣3x−1∣+∣5−x∣+∣x−2∣
We need to calculate f(−2).
Step-by-step solution:
Substitute x=−2 into the function: f(−2)=∣3(−2)−1∣+∣5−(−2)∣+∣(−2)−2∣
Simplify each term inside the absolute values:
3(−2)−1=−6−1=−7⟹∣−7∣=7
5−(−2)=5+2=7⟹∣7∣=7
(−2)−2=−4⟹∣−4∣=4
Add these absolute values: f(−2)=7+7+4=18
Final Answer:
D) 18
2. Problem:
We are given the function: f(2x+a)=8−5x
and f(1)=−2. We need to find f(5).
Step-by-step solution:
Start with f(1)=−2:
Substituting x=1 into f(2x+a): f(2(1)+a)=f(2+a)=8−5(1)
Simplify the right-hand side: f(2+a)=8−5=3
Since f(1)=−2, we now know: 2+a=1⟹a=−1
Find f(5):
Substitute a=−1 into f(2x+a): f(2x−1)=8−5x
Now set 2x−1=5: 2x=6⟹x=3
Substitute x=3 into 8−5x: f(5)=8−5(3)=8−15=−7
Final Answer:
B) -8
Do you want further details or clarifications?
Here are 5 related questions for practice:
For the function f(x)=∣3x+2∣+∣x−4∣+∣5x−1∣, find f(−1).
If f(2x+b)=7−4x and f(0)=3, what is f(6)?
Simplify g(x)=∣x−3∣+∣x+5∣ and find g(0).
If h(x)=∣2x−1∣+∣x−3∣, determine the minimum value of h(x).
For the function f(x)=∣x−1∣2, calculate f(2)+f(−1).
Tip: When dealing with absolute values, carefully handle the cases where the expression inside the absolute value changes sign!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Absolute Value Function Evaluation Linear Functions