Math Problem Statement

IQ scores: Scores on an IQ test are normally distributed. A sample of 

7

 IQ scores had standard deviation =

s

8

.

(a) Construct a 90

%

 confidence interval for the population standard deviation σ

. Round the answers to at least two decimal places.

(b) The developer of the test claims that the population standard deviation is =

σ

1

. Does this confidence interval contradict this claim? Explain.

Part: 0 / 2

0 of 2 Parts Complete

Part 1 of 2

A 90

%

 confidence interval for the population standard deviation is 

<

<

σ   .

Solution

To address this problem, we're constructing a 90%90\% confidence interval for the population standard deviation σ\sigma using the sample standard deviation s=8s = 8 and a sample size of n=7n = 7. Here are the steps to find the confidence interval for σ\sigma:

(a) Constructing the 90%90\% Confidence Interval for the Population Standard Deviation σ\sigma

  1. Identify the Chi-square distribution: The formula for the confidence interval for the population variance (σ2\sigma^2) using a sample is:

    (n1)s2χright2σ2(n1)s2χleft2\frac{(n-1)s^2}{\chi^2_{\text{right}}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{\text{left}}}

    Here:

    • n=7n = 7 (sample size)

    • s=8s = 8 (sample standard deviation)

    • Degrees of freedom df=n1=6df = n - 1 = 6

    • Confidence level is 90%90\%, so the significance level α=0.10\alpha = 0.10

    • For a 90%90\% confidence interval:

      • α/2=0.05\alpha/2 = 0.05
      • Critical values for the Chi-square distribution:
        • χleft2=χ0.05,62\chi^2_{\text{left}} = \chi^2_{0.05, 6}
        • χright2=χ0.95,62\chi^2_{\text{right}} = \chi^2_{0.95, 6}
  2. Determine Chi-square critical values:

    • χ0.05,62=12.592\chi^2_{0.05, 6} = 12.592 (upper-tail critical value)
    • χ0.95,62=1.635\chi^2_{0.95, 6} = 1.635 (lower-tail critical value)
  3. Plug values into the formula:

    Using the formula above, calculate the confidence interval for σ2\sigma^2:

    (6)×(82)12.592σ2(6)×(82)1.635\frac{(6) \times (8^2)}{12.592} \leq \sigma^2 \leq \frac{(6) \times (8^2)}{1.635}

    38412.592σ23841.635\frac{384}{12.592} \leq \sigma^2 \leq \frac{384}{1.635}

    30.5σ2234.930.5 \leq \sigma^2 \leq 234.9

  4. Take the square root of each bound:

    30.5σ234.9\sqrt{30.5} \leq \sigma \leq \sqrt{234.9}

    5.52σ15.335.52 \leq \sigma \leq 15.33

Answer for part (a):

The 90%90\% confidence interval for the population standard deviation σ\sigma is: 5.52σ15.335.52 \leq \sigma \leq 15.33

(b) Does this Confidence Interval Contradict the Developer's Claim?

The developer of the test claims that the population standard deviation is σ=1\sigma = 1.

  • From the computed confidence interval 5.52σ15.335.52 \leq \sigma \leq 15.33, the claimed value of σ=1\sigma = 1 does not lie within this interval.
  • Hence, the confidence interval contradicts the developer's claim, suggesting that the population standard deviation is likely larger than 11.

Let me know if you want any further details or explanations! Here are some related questions:

  1. What does it mean when a confidence interval includes a certain value?
  2. How is the Chi-square distribution used for constructing confidence intervals?
  3. What are the implications if the developer's claim lies outside the confidence interval?
  4. How would the confidence interval change with a larger sample size?
  5. What would a different confidence level (like 95%) imply for the interval?

Tip: Confidence intervals provide a range within which we believe the true population parameter lies, given a certain level of confidence. Always check if the hypothesized parameter value falls within this range to validate claims!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Confidence Interval
Normal Distribution
Chi-square Distribution

Formulas

Confidence interval for population variance: (n-1)s^2 / χ²_right ≤ σ² ≤ (n-1)s^2 / χ²_left
Confidence interval for population standard deviation: √((n-1)s^2 / χ²_right) ≤ σ ≤ √((n-1)s^2 / χ²_left)

Theorems

Chi-square distribution for population variance

Suitable Grade Level

College-level statistics