Math Problem Statement

Find Z[k sin(an)], k ≥ 0

Solution

To solve for the Z-transform of ksinank \sin a n, where k0k \geq 0, we follow these steps:

General Formula for Z-transform:

The Z-transform of a discrete-time signal x[n]x[n] is defined as: [ Z[x[n]] = \sum_{n=0}^{\infty} x[n] z^{-n}. ]

Given Signal:

Here, x[n]=ksin(an)x[n] = k \sin(a n). Let's compute its Z-transform step by step.

  1. Write the signal explicitly: Z[ksin(an)]=n=0ksin(an)zn.Z[k \sin(a n)] = \sum_{n=0}^\infty k \sin(a n) z^{-n}.

    Since kk is a constant, it can be factored out: Z[ksin(an)]=kn=0sin(an)zn.Z[k \sin(a n)] = k \sum_{n=0}^\infty \sin(a n) z^{-n}.

  2. Use the standard formula for sin(an)\sin(a n): Recall that sin(an)=ejanejan2j\sin(a n) = \frac{e^{j a n} - e^{-j a n}}{2j}. Substituting this: n=0sin(an)zn=12jn=0(ejanznejanzn).\sum_{n=0}^\infty \sin(a n) z^{-n} = \frac{1}{2j} \sum_{n=0}^\infty \left( e^{j a n} z^{-n} - e^{-j a n} z^{-n} \right).

  3. Separate the two terms: Let’s split the summation into two parts: n=0sin(an)zn=12j(n=0(zeja)nn=0(zeja)n).\sum_{n=0}^\infty \sin(a n) z^{-n} = \frac{1}{2j} \left( \sum_{n=0}^\infty (z e^{j a})^{-n} - \sum_{n=0}^\infty (z e^{-j a})^{-n} \right).

  4. Apply the geometric series formula: For a geometric series n=0rn=11r\sum_{n=0}^\infty r^n = \frac{1}{1-r}, valid when r<1|r| < 1:

    • For the first term: r=z1ejar = z^{-1} e^{-j a},
    • For the second term: r=z1ejar = z^{-1} e^{j a}.

    Using this, the summations become: n=0sin(an)zn=12j(11z1eja11z1eja).\sum_{n=0}^\infty \sin(a n) z^{-n} = \frac{1}{2j} \left( \frac{1}{1 - z^{-1} e^{j a}} - \frac{1}{1 - z^{-1} e^{-j a}} \right).

  5. Simplify the expressions: Combine the fractions: n=0sin(an)zn=12j(1z1eja)(1z1eja)(1z1eja)(1z1eja).\sum_{n=0}^\infty \sin(a n) z^{-n} = \frac{1}{2j} \cdot \frac{(1 - z^{-1} e^{-j a}) - (1 - z^{-1} e^{j a})}{(1 - z^{-1} e^{j a})(1 - z^{-1} e^{-j a})}.

    Simplify the numerator: (1z1eja)(1z1eja)=z1(ejaeja).(1 - z^{-1} e^{-j a}) - (1 - z^{-1} e^{j a}) = z^{-1} (e^{j a} - e^{-j a}).

    Using ejaeja=2jsin(a)e^{j a} - e^{-j a} = 2j \sin(a), the numerator becomes: z12jsin(a).z^{-1} \cdot 2j \sin(a).

    The denominator simplifies to: (1z1eja)(1z1eja)=12z1cos(a)+z2.(1 - z^{-1} e^{j a})(1 - z^{-1} e^{-j a}) = 1 - 2z^{-1} \cos(a) + z^{-2}.

  6. Final Expression: Substitute these back into the fraction: Z[sin(an)]=sin(a)z112z1cos(a)+z2.Z[\sin(a n)] = \frac{\sin(a) z^{-1}}{1 - 2z^{-1} \cos(a) + z^{-2}}.

    Therefore: Z[ksin(an)]=ksin(a)z112z1cos(a)+z2.Z[k \sin(a n)] = k \cdot \frac{\sin(a) z^{-1}}{1 - 2z^{-1} \cos(a) + z^{-2}}.

This is the Z-transform of ksin(an)k \sin(a n), valid for k0k \geq 0.


Would you like a deeper explanation of any specific step or further examples?

Related Questions:

  1. What is the Z-transform of cos(an)\cos(a n)?
  2. How does the region of convergence (ROC) affect this Z-transform?
  3. Can we derive the inverse Z-transform from this result?
  4. How does kk being a constant influence the transform?
  5. What happens if kk is not constant but varies with nn?

Tip:

Always ensure the region of convergence (ROC) is determined for practical applications of the Z

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Z-transform
Discrete-time signal processing
Geometric series
Sine functions

Formulas

Z[x[n]] = \sum_{n=0}^{\infty} x[n] z^{-n}
\sin(a n) = \frac{e^{j a n} - e^{-j a n}}{2j}
\sum_{n=0}^\infty r^n = \frac{1}{1-r}, \text{ valid for } |r| < 1
Z[\sin(a n)] = \frac{\sin(a) z^{-1}}{1 - 2z^{-1} \cos(a) + z^{-2}}

Theorems

Geometric series sum formula

Suitable Grade Level

Undergraduate (Signal Processing or Advanced Engineering Math)