Math Problem Statement

استعمال الاحداثيات الاسطوانية

استعمال الاحداثيات الاسطوانية

Solution

The exercise asks to calculate the volume V1V_1 of a sphere centered at the origin (0,0,0)(0, 0, 0) with radius 2 using spherical coordinates. Let’s solve this step-by-step using spherical coordinates.


Step 1: Spherical Coordinates

In spherical coordinates: x=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕ,x = \rho \sin\phi \cos\theta, \quad y = \rho \sin\phi \sin\theta, \quad z = \rho \cos\phi, where:

  • ρ\rho is the radial distance (0ρR0 \leq \rho \leq R),
  • ϕ\phi is the polar angle (0ϕπ0 \leq \phi \leq \pi),
  • θ\theta is the azimuthal angle (0θ2π0 \leq \theta \leq 2\pi).

The volume element dxdydzdxdydz becomes: dxdydz=ρ2sinϕdρdϕdθ.dxdydz = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.


Step 2: Volume of the Sphere

The sphere D1D_1 has radius R=2R = 2. Thus, ρ\rho varies from 00 to 22, ϕ\phi varies from 00 to π\pi, and θ\theta varies from 00 to 2π2\pi. The volume V1V_1 is given by: V1=D1dxdydz=02π0π02ρ2sinϕdρdϕdθ.V_1 = \iiint_{D_1} dx\,dy\,dz = \int_0^{2\pi} \int_0^\pi \int_0^2 \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.


Step 3: Evaluate the Integral

  1. Integral over ρ\rho: 02ρ2dρ=[ρ33]02=83.\int_0^2 \rho^2 \, d\rho = \left[ \frac{\rho^3}{3} \right]_0^2 = \frac{8}{3}.

  2. Integral over ϕ\phi: 0πsinϕdϕ=[cosϕ]0π=cosπ(cos0)=2.\int_0^\pi \sin\phi \, d\phi = \left[ -\cos\phi \right]_0^\pi = -\cos\pi - (-\cos 0) = 2.

  3. Integral over θ\theta: 02πdθ=2π.\int_0^{2\pi} d\theta = 2\pi.


Step 4: Combine the Results

Now, multiply the results from all three integrals: V1=8322π=32π3.V_1 = \frac{8}{3} \cdot 2 \cdot 2\pi = \frac{32\pi}{3}.


Final Answer:

The volume of the sphere is: V1=32π3.V_1 = \frac{32\pi}{3}.


Would you like a detailed breakdown of any part? Let me know!

5 Related Questions:

  1. How are cylindrical coordinates used to find the volume of a cylinder?
  2. What is the Jacobian determinant in spherical coordinates?
  3. How do spherical coordinates simplify the calculation of integrals for spheres?
  4. How is the surface area of a sphere derived using spherical coordinates?
  5. What is the difference between cylindrical and spherical coordinate systems?

Tip:

When setting up triple integrals in spherical coordinates, always remember to include the Jacobian term ρ2sinϕ\rho^2 \sin\phi for accurate results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integrals
Spherical Coordinates
Volume Calculation

Formulas

x = ρsinφcosθ, y = ρsinφsinθ, z = ρcosφ
Volume element: dV = ρ²sinφ dρ dφ dθ
∫∫∫ dxdydz = ∫∫∫ ρ²sinφ dρ dφ dθ

Theorems

Volume of a Sphere Using Spherical Coordinates

Suitable Grade Level

Grades 11-12