Math Problem Statement

find the volume of the solid whose base is the semicircle 𝑦

1 βˆ’ π‘₯ 2 where βˆ’ 1 ≀ π‘₯ ≀ 1 and the cross-sections perpendicular to the π‘₯ -axis are squares

Solution

To find the volume of the solid whose base is the semicircle y=1βˆ’x2y = 1 - x^2 with βˆ’1≀x≀1-1 \leq x \leq 1, and whose cross-sections perpendicular to the xx-axis are squares, we use the cross-section method.

Step 1: Identify the Side Length of the Square

Each cross-section is a square with a side length equal to the function y=1βˆ’x2y = 1 - x^2. This means the area of the square at any given xx is:

A(x)=(side length)2=(1βˆ’x2)2A(x) = (\text{side length})^2 = (1 - x^2)^2

Step 2: Set Up the Integral

To find the volume, we integrate the area function over the given interval:

V=βˆ«βˆ’11A(x) dx=βˆ«βˆ’11(1βˆ’x2)2 dxV = \int_{-1}^{1} A(x) \,dx = \int_{-1}^{1} (1 - x^2)^2 \,dx

Step 3: Expand the Integrand

Expanding (1βˆ’x2)2(1 - x^2)^2:

(1βˆ’x2)2=1βˆ’2x2+x4(1 - x^2)^2 = 1 - 2x^2 + x^4

Thus, the integral simplifies to:

V=βˆ«βˆ’11(1βˆ’2x2+x4) dxV = \int_{-1}^{1} (1 - 2x^2 + x^4) \,dx

Step 4: Compute the Integral

We integrate term by term:

βˆ«βˆ’111 dx=xβˆ£βˆ’11=1βˆ’(βˆ’1)=2\int_{-1}^{1} 1 \,dx = x \Big|_{-1}^{1} = 1 - (-1) = 2

βˆ«βˆ’112x2 dx=2βˆ«βˆ’11x2 dx\int_{-1}^{1} 2x^2 \,dx = 2 \int_{-1}^{1} x^2 \,dx

Since βˆ«βˆ’aaxn dx\int_{-a}^{a} x^n \,dx is zero for odd powers and symmetric for even powers:

βˆ«βˆ’11x2 dx=x33βˆ£βˆ’11=13βˆ’(βˆ’1)33=13βˆ’(βˆ’13)=23\int_{-1}^{1} x^2 \,dx = \frac{x^3}{3} \Big|_{-1}^{1} = \frac{1}{3} - \frac{(-1)^3}{3} = \frac{1}{3} - (-\frac{1}{3}) = \frac{2}{3}

Thus,

βˆ«βˆ’112x2 dx=2Γ—23=43\int_{-1}^{1} 2x^2 \,dx = 2 \times \frac{2}{3} = \frac{4}{3}

βˆ«βˆ’11x4 dx=x55βˆ£βˆ’11=15βˆ’(βˆ’15)=25\int_{-1}^{1} x^4 \,dx = \frac{x^5}{5} \Big|_{-1}^{1} = \frac{1}{5} - (-\frac{1}{5}) = \frac{2}{5}

Step 5: Compute the Final Volume

V=2βˆ’43+25V = 2 - \frac{4}{3} + \frac{2}{5}

Finding a common denominator (15):

V=3015βˆ’2015+615=1615V = \frac{30}{15} - \frac{20}{15} + \frac{6}{15} = \frac{16}{15}

Final Answer:

V=1615V = \frac{16}{15}

Let me know if you have any questions!

Related Problems:

  1. Find the volume when the cross-sections are equilateral triangles.
  2. Solve the problem when the cross-sections are semicircles.
  3. Find the centroid of the semicircle base.
  4. Determine the volume if the base was a full circle instead.
  5. Find the volume using cylindrical shells (alternative approach).

Tip:

When dealing with square cross-sections, the function defining the region usually represents the side length, so remember to square it before integrating.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Volume of Solids
Integration
Cross-section Method

Formulas

Volume V = ∫(Area of cross-section) dx
Area of square = (side length)^2

Theorems

Fundamental Theorem of Calculus
Symmetry of definite integrals

Suitable Grade Level

Grades 11-12