Math Problem Statement
tan(pi/4+x)=sec2x+tan2x
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometric Identities
Addition Formula for Tangent
Double-Angle Identities
Formulas
tan(a + b) = (tan a + tan b) / (1 - tan a * tan b)
sec(2x) = 1 / cos(2x)
tan(2x) = 2 * tan(x) / (1 - tan^2(x))
Theorems
Trigonometric Identity Simplification
Suitable Grade Level
Grades 10-12
Related Recommendation
Prove the Trigonometric Identity (1 + tan^2(x)) / (1 - tan^2(x)) = sec(2x)
Proof of Trigonometric Identity (1 + tan x)^2 = sec^2 x + 2 tan x
Trigonometric Identity Verification: sec(t) + 1 / tan(t) = tan(t) / (sec(t) - 1)
Verify the Trigonometric Identity (tan(x) + cot(x))^2 = sec^2(x) + csc^2(x)
Verify Trigonometric Identity: 1 + tan²θ/(secθ + 1) = secθ