Math Problem Statement

Show me step by step this "Check that both y

e − 4 x and y

xe − 4 x are solutions to the differential equation y ′ ′

8 y ′

1 6 y

0 . "

Solution

We are tasked with verifying that the functions y=e4xy = e^{-4x} and y=xe4xy = xe^{-4x} are solutions to the differential equation:

y+8y+16y=0y'' + 8y' + 16y = 0

Step-by-Step Solution:

We'll check if each of the given functions satisfies this differential equation by calculating their first and second derivatives and substituting them into the equation.


1. Check if y=e4xy = e^{-4x} is a solution

Step 1: Compute the first derivative yy'

The function is: y=e4xy = e^{-4x}

Using the chain rule: y=ddx(e4x)=4e4xy' = \frac{d}{dx} \left(e^{-4x}\right) = -4e^{-4x}

Step 2: Compute the second derivative yy''

Now, differentiate y=4e4xy' = -4e^{-4x}: y=ddx(4e4x)=16e4xy'' = \frac{d}{dx} \left(-4e^{-4x}\right) = 16e^{-4x}

Step 3: Substitute y,y,yy, y', y'' into the differential equation

Now we substitute y=e4xy = e^{-4x}, y=4e4xy' = -4e^{-4x}, and y=16e4xy'' = 16e^{-4x} into the equation y+8y+16y=0y'' + 8y' + 16y = 0:

16e4x+8(4e4x)+16(e4x)=016e^{-4x} + 8(-4e^{-4x}) + 16(e^{-4x}) = 0 16e4x32e4x+16e4x=016e^{-4x} - 32e^{-4x} + 16e^{-4x} = 0 (1632+16)e4x=0(16 - 32 + 16)e^{-4x} = 0 0=00 = 0

This is true, so y=e4xy = e^{-4x} is a solution.


2. Check if y=xe4xy = xe^{-4x} is a solution

Step 1: Compute the first derivative yy'

The function is: y=xe4xy = xe^{-4x}

Apply the product rule: y=ddx(xe4x)=ddx(x)e4x+xddx(e4x)y' = \frac{d}{dx} \left( x e^{-4x} \right) = \frac{d}{dx}(x) \cdot e^{-4x} + x \cdot \frac{d}{dx}(e^{-4x}) y=e4x+x(4e4x)=e4x4xe4xy' = e^{-4x} + x(-4e^{-4x}) = e^{-4x} - 4xe^{-4x}

Step 2: Compute the second derivative yy''

Now differentiate y=e4x4xe4xy' = e^{-4x} - 4xe^{-4x} using the product rule for the second term:

y=ddx(e4x)ddx(4xe4x)y'' = \frac{d}{dx}\left( e^{-4x} \right) - \frac{d}{dx}\left( 4xe^{-4x} \right) y=4e4x4(e4x4xe4x)y'' = -4e^{-4x} - 4\left( e^{-4x} - 4xe^{-4x} \right) y=4e4x4e4x+16xe4xy'' = -4e^{-4x} - 4e^{-4x} + 16xe^{-4x} y=8e4x+16xe4xy'' = -8e^{-4x} + 16xe^{-4x}

Step 3: Substitute y,y,yy, y', y'' into the differential equation

Now we substitute y=xe4xy = xe^{-4x}, y=e4x4xe4xy' = e^{-4x} - 4xe^{-4x}, and y=8e4x+16xe4xy'' = -8e^{-4x} + 16xe^{-4x} into the equation y+8y+16y=0y'' + 8y' + 16y = 0:

(8e4x+16xe4x)+8(e4x4xe4x)+16xe4x=0(-8e^{-4x} + 16xe^{-4x}) + 8(e^{-4x} - 4xe^{-4x}) + 16xe^{-4x} = 0 8e4x+16xe4x+8e4x32xe4x+16xe4x=0-8e^{-4x} + 16xe^{-4x} + 8e^{-4x} - 32xe^{-4x} + 16xe^{-4x} = 0 (8+8)e4x+(1632+16)xe4x=0( -8 + 8)e^{-4x} + (16 - 32 + 16)xe^{-4x} = 0 0e4x+0xe4x=00e^{-4x} + 0xe^{-4x} = 0 0=00 = 0

This is true, so y=xe4xy = xe^{-4x} is also a solution.


Conclusion:

Both y=e4xy = e^{-4x} and y=xe4xy = xe^{-4x} are solutions to the differential equation y+8y+16y=0y'' + 8y' + 16y = 0.


Would you like more details or have any questions on this process? Here are some related questions you might find interesting:

  1. What is the general solution to the differential equation y+8y+16y=0y'' + 8y' + 16y = 0?
  2. How do you solve a second-order linear homogeneous differential equation with constant coefficients?
  3. What role does the characteristic equation play in solving such differential equations?
  4. How would you handle a non-homogeneous version of this differential equation?
  5. Can these methods be applied to higher-order differential equations?

Tip: When checking if a function is a solution to a differential equation, always compute the derivatives first and substitute them systematically into the equation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Second-Order Differential Equations
Product Rule
Chain Rule

Formulas

y'' + 8y' + 16y = 0
y' = -4e^{-4x}
y'' = 16e^{-4x}
y' = e^{-4x} - 4xe^{-4x}
y'' = -8e^{-4x} + 16xe^{-4x}

Theorems

Verification of Solutions to Differential Equations
Product Rule
Chain Rule

Suitable Grade Level

Grades 11-12